摘要:
An SPS receiver comprises a radio receiver for measuring pseudoranges to orbiting SPS satellites, a local real time clock accurate within three seconds of true SPS system time, and a communication channel to receive NAV-data rebroadcasts from a server. Such server is associated with its own private navigation receiver that has direct satellite signal reception that is strong enough to reliably demodulate the SPS system NAV-data. The SPS receiver synthesizes its own NAV-data from time information provided by the local real time clock and almanac and ephemeris data provided by the server in the rebroadcast. Thus the SPS receiver can operate in weak signal environments that would otherwise be impossible.
摘要:
A cellphone system comprises a GPS reference station located with a telephone cell site.. Such GPS reference station tracks the GPS satellites visible to its local area and estimates the Doppler for each such GPS satellite. The system also includes mobile GPS receivers and cellphones that move around and through the operational area of the cell site. It is assumed that the satellite Dopplers seen by the GPS reference station will have insubstantial differences with the true Dopplers observed by other GPS receivers operating within the cell site's service area. The Doppler estimates are thus routinely communicated over a wireless telephone channel to the mobile GPS receivers and cellphones that register locally. Such mobile GPS receivers then can confidently adopt the surrogate Doppler estimates as a center starting point for their initialization frequency searches. The time required for such mobile GPS receivers and cellphones to initialize and provide a first fix is thereby substantially reduced.
摘要:
A navigation-satellite receiver support data network comprises a server connected to the Internet to provide initialization information to clients for faster cold starts. The server includes a GPS receiver that provides for tracking of a constellation of navigation satellites. When a client is started cold, time and frequency are initially unknown to it. Test messages are sent back and forth over the Internet and a path delay time is computed from the average of the quickest transit times. This yields the offset time between the server's time system and the client's time system. The server sends current time information to the client, and the computed path delay is added. The client can then compute correct time from the server and path delay information, and thereby select much sooner which satellites are correct to search.
摘要:
A navigation-satellite receiver network comprises a server connected to the Internet to provide real-time correction information to clients. The server includes a GPS receiver that provides for tracking of a constellation of navigation satellites. When a client is online, it can receive satellite position and velocity information in the form of a polynomial and coefficients. Clock, ionosphere, troposphere, and other corrections are all bundled into one polynomial. The client therefore never computes or uses almanac or ephemeris.
摘要:
A navigation-satellite receiver comprises a crystal oscillator that is affected by local ambient temperature in a repeatable way. After locking onto a GPS satellite, the receiver is used to calculate the true frequency bias of the local crystal oscillator. GPS-system lock provides an atomic-clock basis for such measurements of true frequency. The current temperature of the crystal is measured and recorded in association with the true frequency bias measurement. The data is then used to generate a ninth-order polynomial that describes the frequency drift of the crystal over temperature. Then during receiver initialization when the local reference oscillator is not in lock, the ambient temperature is measured and used to index the ninth-order polynomial to estimate the actual crystal frequency. Such frequency estimate is then used as a basis to find signal from visible SV's in an overhead constellation.
摘要:
A satellite-navigation system comprises an observer platform for collecting signal observations from orbiting navigation satellites. A server platform provides a simplified navigation-satellite constellation almanac, ephemeris, differential correction, and client services. A navigation platform passes information between the observer and server platforms and provides for autonomous position solution computations for a limited time after a periodic call for an aiding data from the server platform. A measurement platform included in the server platform makes static observations of a navigation-satellite constellation and that builds a database of measurement errors and satellite data messages. A health and quality monitor included in the server platform checks the static observations and preventing an inclusion of incorrect information in the database of measurement errors and satellite data messages. A TCP/IP communication link existing at least once between the server and navigation platforms supports an information datapacket format that periodically transfers over the communication link. It reduces the almanac and ephemeris satellite messages at the server platform to a set of simple polynomials that represent a recent satellite position and velocity. These are useful at the navigation platform to compute a current position solution with real-time data from the observation platform. An aiding data with light-weight models is provided by the server platform to the observer platform to eliminate all data storage of almanac and ephemeris, and to permit only fixed-point integer arithmetic to be used to solve for user position at the navigation platform.