Abstract:
Embodiments of optical fiber may include cladding features that include a material (e.g., fluorine-doped silica glass) that may produce a very low relative refractive index difference with respect to cladding material in which the cladding features are disposed. This relative refractive index difference may be characterized by (n1−n2)/n1, where n1 is the index of refraction of the cladding material in which the cladding features are included, and n2 is the index of refraction of the cladding features. In certain embodiments, the relative refractive index difference may be less than about 4.5×10−3. In various embodiments, the configuration of the cladding features including, for example, the size and spacing of the cladding features, can be selected to provide for confinement of the fundamental mode yet leakage for the second mode and higher modes, which may provide mode filtering, single mode propagation, and/or low bend loss.
Abstract:
A fiber-based source for high-energy picosecond and nanosecond pulses is described, By mit-nimizing nonlinear energy limitations in fiber amplifiers, pulse energies close to the damage threshold of optical fibers can be generated. The implementation of optimized seed sources in conjunction with amplifier chains comprising at least one nonlinear fiber amplifier allows for the generation of near bandwidth-limited high-energy picosecond pulses. Optimized seed sources for high-energy pulsed fiber amplifiers comprise semiconductor lasers as well as stretched mode locked fiber lasers. The maximization of the pulse energies obtainable from fiber amplifiers further allows for the generation of high-energy ultraviolet and IR pulses at high repetition rates.
Abstract:
By compensating polarization mode-dispersion as well chromatic dispersion in photonic crystal fiber pulse compressors, high pulse energies can be obtained from all-fiber chirped pulse amplification systems. By inducing third-order dispersion in fiber amplifiers via self-phase modulation, the third-order chromatic dispersion from bulk grating pulse compressors can be compensated and the pulse quality of hybrid fiber/bulk chirped pulse amplification systems can be improved. Finally, by amplifying positively chirped pulses in negative dispersion fiber amplifiers, low noise wavelength tunable seed source via anti-Stokes frequency shifting can be obtained.
Abstract:
Embodiments described herein include a system for producing ultrashort tunable pulses based on ultra broadband OPA or OPG in nonlinear materials. The system parameters such as the nonlinear material, pump wavelengths, quasi-phase matching periods, and temperatures can be selected to utilize the intrinsic dispersion relations for such material to produce bandwidth limited or nearly bandwidth limited pulse compression. Compact high average power sources of short optical pulses tunable in the wavelength range of 1800 - 2100 nm and after frequency doubling in the wavelength range of 900 - 1050 nm can be used as a pump for the ultra broadband OPA or OPG. In certain embodiments, these short pump pulses are obtained from an Er fiber oscillator at about 1550 nm, amplified in Er fiber, Raman-shifted to 1800 - 2100 nm, stretched in a fiber stretcher, and amplified in Tm-doped fiber. To produce short pulses in the 900 - 1050 nm wavelength range, the pulses are frequency-doubled with a chirped frequency doubler for nearly bandwidth-limited output.
Abstract:
A method of fabricating a multi-layered thin film electrochemical device is provided. The method comprises: providing a first target material in a chamber; providing a substrate in the chamber; emitting a first intermittent laser beam directed at the first target material to generate a first plasma, wherein each pulse of the first intermittent laser beam has a pulse duration of about 20 fs to about 500 ps; depositing the first plasma on the substrate to form a first thin film; providing a second target material in the chamber; emitting a second intermittent laser beam directed at the second target material to generate a second plasma, wherein each pulse of the second intermittent laser beam has a pulse duration of about 20 fs to about 500 ps; and depositing the second plasma on or above the first thin film to form a second thin film.
Abstract:
A method for controlling the stability of a short-pulse laser, comprising the step of isolating said short-pulse laser from an external environment, wherein the short-pulse laser is a fiber laser, by wrapping said fiber laser on a fiber spool.
Abstract:
A fiber-based source for high-energy picosecond and nanosecond pulses is described, By mit-nimizing nonlinear energy limitations in fiber amplifiers, pulse energies close to the damage threshold of optical fibers can be generated. The implementation of optimized seed sources in conjunction with amplifier chains comprising at least one nonlinear fiber amplifier allows for the generation of near bandwidth-limited high-energy picosecond pulses. Optimized seed sources for high-energy pulsed fiber amplifiers comprise semiconductor lasers as well as stretched mode locked fiber lasers. The maximization of the pulse energies obtainable from fiber amplifiers further allows for the generation of high-energy ultraviolet and IR pulses at high repetition rates.
Abstract:
A method of forming a porous composite separator layer for an electrochemical cell comprising the steps of printing a thin layer of a separator precursor solution on the surface of one of the electrochemical cell electrodes, curing the thin layer of separator precursor solution so that it transforms into a microporous composite separator structure. In the preferred embodiment, the separator precursor solution is formulated as an ink comprising a silica aerogel filler material dispersed in a solution of polymer binder which is dissolved in a suitable solvent. The process allows the manufacture of thin and flexible composite separators which are conformally bonded to the underlying electrodes.