Abstract:
An encoded information reading terminal can comprise a microprocessor, a memory communicatively coupled to the microprocessor, a communication interface, and an RFID reading device configured to output raw message data comprising an encoded message and/or output decoded message data corresponding to an encoded message. The EIR terminal can be configured, responsive to receiving one or more target item identifiers, to attempt to locate at least one RFID tag transmitting an encoded representation of a binary string, at least part of which is equal to at least part one of the specified one or more target item identifiers. The EIR terminal can be further configured, responsive to successfully locating at least one RFID tag, to notify a user via a visual message and/or an audible message.
Abstract:
Method of and system for reading bar code symbols using a hand-supportable laser scanning bar code symbol reading system supporting an improved level control over the length of laser scan lines projected onto scanned objects, at any instant in time, in a manner dependent the detected location, distance or range of the scanned object in the scanning field of the system during system operation. The length characteristics of the laser scan line are controlled by setting the laser scan sweep angle as a function of detected or estimated distance or range of the object from the system. In the illustrative embodiment, the laser scan sweep angle is controlled by supplying a drive current to the scanning mechanism, as a function of detected or estimated distance or range of the object from the scanning system.
Abstract:
A method of operating an indicia reader includes reading at least one indicia, the indicia having an encoded executable software program; storing the encoded executable software program into memory of the indicia reader; and running the encoded executable software program.
Abstract:
An optical indicia reading terminal can comprise a microprocessor, a memory, and an image sensor integrated circuit, all coupled to a system bus, and a hand held housing encapsulating the two-dimensional image sensor. The image sensor integrated circuit can comprise a two-dimensional image sensor including a plurality of pixels. The image sensor integrated circuit can be configured to read out a plurality of analog signals. Each analog signal of the plurality of analog signals can be representative of light incident on at least one pixel of the plurality of pixels. The image sensor integrated circuit can be further configured to derive a plurality of luminance signals from the plurality of analog signals, each luminance signal being representative of the luminance of light incident on at least one pixel of the plurality of pixels. The image sensor integrated circuit can be further configured to store a frame of image data in the terminal's memory by converting the plurality of luminance signals to a plurality of digital values, each digital value being representative of the luminance of light incident on at least one pixel of the plurality of pixels. The optical indicia reading terminal can be configured to process the frame of image data for decoding decodable indicia.
Abstract:
An encoded information reading (EIR) terminal can comprise a microprocessor, a communication interface, an NFC reading device, and an EIR device, all communicatively coupled to the system bus. The EIR reading device can be provided by a bar code reading device, an RFID reading device, or a card reading device. The EIR device can be configured to perform outputting raw message data containing an encoded message or outputting decoded message data corresponding to an encoded message. The EIR terminal can be configured, responsive to completing a decoding operation by the EIR device, to initiate a payment operation using the NFC reading device. The EIR terminal can be further configured, responsive to receiving a response from an NFC tag supporting a payment protocol, to transmit a payment operation request to an external computer.
Abstract:
A digital-imaging based code symbol reading system which automatically detects hand-induced vibration when the user attempts to read one or more 1D and/or 2D code symbols on an object, and controls system operation in order to reduce motion blur in digital images captured by the hand-supportable system, whether operated in a snap-shot or video image capture mode. An accelerometer sensor is used to automatically detect hand/system acceleration in a vector space during system operation. In a first embodiment, digital image capture is initiated when the user manually depresses a trigger switch, and decode processed only when the measured acceleration of the hand-supportable housing is below predetermined acceleration threshold levels. In another embodiment, digital image capture is initiated when an object is automatically detected in the field of view of the system, and decode processed only when the measured acceleration of the hand-supportable housing is below predetermined acceleration threshold levels.
Abstract:
An optical indicia reading terminal can comprise a microprocessor, a memory, and an image sensor integrated circuit, all coupled to a system bus, and a hand held housing encapsulating the two-dimensional image sensor. The image sensor integrated circuit can comprise a two-dimensional image sensor including a plurality of pixels. The image sensor integrated circuit can be configured to read out a plurality of analog signals. Each analog signal of the plurality of analog signals can be representative of light incident on at least one pixel of the plurality of pixels. The image sensor integrated circuit can be further configured to derive a plurality of luminance signals from the plurality of analog signals, each luminance signal being representative of the luminance of light incident on at least one pixel of the plurality of pixels. The image sensor integrated circuit can be further configured to store a frame of image data in the terminal's memory by converting the plurality of luminance signals to a plurality of digital values, each digital value being representative of the luminance of light incident on at least one pixel of the plurality of pixels. The optical indicia reading terminal can be configured to process the frame of image data for decoding decodable indicia.