Abstract:
There are provided a predoping material, an electric storage device including the material, and a method of producing the device. The predoping material is used for an alkali metal ion electric storage device and is represented by Formula (1):
R(̵SM)n (I)
where M represents lithium or sodium; n represents an integer of 2 to 6; and R represents an aliphatic hydrocarbon, optionally substituted aromatic hydrocarbon, or optionally substituted heterocycle having 1 to 10 carbon atoms.
Abstract:
The present invention relates to an anode active material for a lithium secondary battery, comprising a carbon material, and a coating layer formed on the surface of particles of the carbon material and having a plurality of Sn-based domains having an average diameter of 1 µm or less. The inventive anode active material having a Sn-based domains coating layer on the surface of a carbon material can surprisingly prevent stress due to volume expansion which generates by an alloy of Sn and lithium. Also, the inventive method for preparing an anode active material can easily control the thickness of the coating layer.
Abstract:
Particles (A) comprising an element capable of intercalating and deintercalating lithium ions, carbon particles (B) capable of intercalating and deintercalating lithium ions, multi-walled carbon nanotubes (C), carbon nanofibers (D) and optionally electrically conductive carbon particles (E) are mixed in the presence of shear force to obtain a composite electrode material. A lithium ion secondary battery is obtained using the above composite electrode material.
Abstract:
Disclosed a novel tin oxide-containing polymer composite materials, a process for production thereof and the use thereof for production of tin-carbon composite material composed of at least one inorganic tin-containing phase in which the tin is present in elemental form or in the form of tin(II) oxide or in the form of a mixture thereof; and of a carbon phase in which carbon is present in elemental form. Such tin-carbon composite materials are particularly suitable for production of anode materials for electrochemical cells, especially lithium cells.
Abstract:
A method of depositing an active material for a metal ion battery comprising the steps of: providing a conductive material in an electrodeposition bath wherein the electrodeposition bath contains an electrolyte comprising a source of the active material; and electrodepositing the active material onto a surface of the conductive material.
Abstract:
The present invention provides a nonaqueous electrolytic solution capable of improving electrochemical characteristics in a broad temperature range, such as low-temperature cycle properties and low-temperature discharge properties after high-temperature storage, and provides an energy storage device using the nonaqueous electrolytic solution. The invention includes (1) a nonaqueous electrolytic solution of an electrolyte salt dissolved in a nonaqueous solvent, which comprises from 0.001 to 10% by mass of a compound represented by the following general formula (I), and (2) an energy storage device comprising a positive electrode, a negative electrode, and a nonaqueous electrolytic solution of an electrolyte salt dissolved in a nonaqueous solvent, wherein the nonaqueous electrolytic solution is the nonaqueous electrolytic solution of (1).
(In the formula, Y represents a group -C(=O)- or a group -S(=O) 2 -; R 3 and R 4 each independently represent an aryl group having from 6 to 10 carbon atoms in which at least one hydrogen atom is substituted with a halogen atom, or R 3 and R 4 bonding to each other represent a cycloalkanediyl group or a benzenediyl group, having from 5 to 12 carbon atoms. R represents -C(R 1 )(R 2 )- or -L-; R 1 and R 2 each independently represent a hydrogen atom, a halogen atom, or an alkyl group having from 1 to 4 carbon atoms; and L represents a divalent linking group having from 1 to 6 carbon atoms and optionally substituted with a halogen atom.)
Abstract:
The present invention provides a nonaqueous electrolyte electricity storage device including a separator that can be produced by a method in which use of a solvent that places a large load on the environment can be avoided and in which control of parameters such as the pore diameter is relatively easy, the nonaqueous electrolyte electricity storage device being capable of trapping ions of metals that tend to form a complex other than lithium. The present invention is a nonaqueous electrolyte electricity storage device including a cathode, an anode, a separator disposed between the cathode and the anode, and an electrolyte having ion conductivity. The cathode and/or the anode is formed of a material containing at least one metal element selected from the group consisting of transition metals, aluminum, tin, and silicon. The separator includes a porous epoxy resin body having a porous structure with a specific surface area of 5 to 60 m 2 /g, and the porous epoxy resin body contains at least one amino group selected from the group consisting of a primary amino group, a secondary amino group, and a tertiary amino group.
Abstract:
A negative electrode active material for an electric device includes an alloy containing Si in a range of greater than or equal to 27% by mass and less than 100% by mass, Sn in a range of greater than 0% by mass and less than or equal to 73% by mass, V in a range of greater than 0% by mass and less than or equal to 73% by mass, and inevitable impurities as a residue. The negative electrode active material can be obtained with, for example, a multi DC magnetron sputtering apparatus by use of Si, Sn, and V as targets. An electric device using the negative electrode active material can achieve long cycle life and ensure a high capacity and cycle durability.
Abstract:
The object of the present invention is to provide carbon fiber material having high electrical conductivity at a low cost. A manufacturing method of carbon fiber material comprises a dispersion liquid preparation step, a centrifugal spinning step and a denaturation step. The dispersion liquid preparation step is a step in which dispersion liquid containing resin and carbon particles is prepared. The centrifugal spinning step is a step in which nonwoven fabric made of a carbon fiber precursor is formed from the dispersion liquid. The denaturation step is a step in which the carbon fiber precursor denatures into carbon fiber.