摘要:
Strip cladding heads and strip cladding systems are disclosed. A disclosed example strip feeder for a strip cladding system includes; a drive roller to advance a cladding strip along a strip feed path through contact plates; a first guide rail having a first slot extending across an entirety of the strip feed path; a first adjustable bearing and a second adjustable bearing located within the first slot, the first adjustable bearing and the second adjustable bearing capable of being secured at positions within the first slot using corresponding first and second strip width adjusters; a second guide rail having a second slot extending across an entirety of the strip feed path and positioned at a different location than the first guide rail along the strip feed path; and a third adjustable bearing and a fourth adjustable bearing located within the second slot, the third adjustable bearing and the fourth adjustable bearing capable of being secured at positions within the second slot using corresponding third and fourth strip width adjusters, the first, second, third, and fourth strip width adjusters to, when secured, define a location and a width of an effective strip feed path.
摘要:
A method of repairing defect in cast iron workpiece, including: machining the workpiece in the area of the defect to remove the defective material and form a chamber opening at a surface of the workpiece; anchoring a receptacle to the workpiece above the chamber (2), the receptacle is provided with an orifice in communication with the chamber; adding molten iron (4) into the receptacle so that it at least part of it flows into the chamber; adding slagging agent (5) into the receptacle; heating the slagging agent and the molten iron with an electrode (6); adding nodulizing agent into the molten iron so as to segregate graphite; and allowing the molten iron and the workpiece to cool down slowly. The above-described technique also has applicability for connecting two cast iron workpieces (11,12) together.
摘要:
A method of repairing service-induced surface cracks (92) in a superalloy component (90). A layer of powdered flux material (100) is applied over the cracks and is melted with a laser beam (98) to form a re-melted zone (104) of the superalloy material under a layer of slag (106). The slag cleanses the melt pool of contaminants that may have been trapped in the cracks, thereby eliminating the need for pre-melting fluoride ion cleaning. Optionally, alloy feed material may be applied with the powdered flux material to augment the volume of the melt or to modify the composition of the re-melted zone.
摘要:
A method for depositing superalloy materials. A layer of powder (14) disposed over a superalloy substrate (12) is heated with an energy beam (16) to form a layer of superalloy cladding (10) and a layer of slag (18). The layer of powder includes flux material and alloy material, formed either as separate powders or as a hybrid particle powder. A layer of powdered flux material (22) may be placed over a layer of powdered metal (20), or the flux and metal powders may be mixed together (36). An extrudable filler material (44) such as nickel, nickel-chromium or nickel-chromium-cobalt wire or strip may be added to the melt pool to combine with the melted powder to give the superalloy cladding the composition of a desired superalloy material
摘要:
In a method of depositing an overlay material onto a metal surface by means of electroslag strip cladding, said electroslag strip cladding comprises using a welding strip electrode made of a 625 alloy and a flux material having a CaF 2 content of > 55 wt%, preferably > 60 wt%.