摘要:
The present invention comprises a method for injecting a heavier payload into orbit than is possible using a traditional method and the same rocket booster launch vehicle. The method of the present invention does not utilize a parking orbit and does not perform orbital injection at perigee or apogee of the desired orbit. Rather, in the present method the flight path angle is positive at the final lower stage booster burn so as to boost the perigee kick motor and payload into a suborbital trajectory (36) having a low perigee, which may be below the surface of the Earth (8). In the preferred embodiment, the launch vehicle maintains a negative flight path angle during the PKM burn. The PKM burn does not occur at perigee, but perigee is at the desired location when the PKM burn is complete. Use of this method increases the payload capacity of some launch vehicles by up to fifty percent (50%).
摘要:
Un lanceur à sustentation assistée propulsé par fusée et déployé en l'air (sigle anglais ALBV) (100) transporte efficacement des charges marchandes réduites à des altitudes et des vitesses orbitales, supraorbitales et suborbitales. L'ALBV est porté sous un avion de transport conventionnel (200) d'où il est largué à l'altitude et à la vitesse de lancement, ce qui apporte une énergie totale singificative à la trajectoire d'ascension de l'ALBV. L'ALBV comprend des ailes (23) de sustentation aérodynamique qui aident l'ascension du véhicule et des empennages de queue (24) qui commandent l'assiette pendant que le véhicule est dans l'atmosphère sensible. Après le lancement par larguage, une manoeuvre nouvelle en "S vertical" est effectuée par commande aérodynamique, provoquant l'ascension de l'ALBV (100) sur une trajectoire presque théoriquement optimale. Dans le mode préférentiel de réalisation, les ailes (23) et les empennages de queue (24) sont largués lorsque le véhicule quitte l'atmosphère sensible et que la sustentation aérodynamique prend fin. L'invention représente une amélioration frappante par rapport aux approches antérieures du lancement de charges marrchandes en orbite, étant donné qu'elle permet de pratiquement doubler la charge marchande utile qui peut être transportée par le lanceur par rapport à des véhicules identiques lancés du sol.
摘要:
Systems and methods for commanding a satellite are provided. A system for commanding a satellite includes a data bus and a payload coupled to the data bus, the payload including a payload receiver. The system further includes a primary receiver coupled to the data bus and a processor coupled to the data bus. The processor configured to receive a first command from the primary receiver via the data bus, and to receive telemetry data from the payload via the data bus. The processor is further configured to detect a second command by processing the telemetry data received from the payload, and to execute the detected second command.
摘要:
A satellite (10) has two solar array panels (40,42) which are moveable between a closed configuration and an open configuration. The solar array panels are pivotably mounted on hinges (44,46) attached along the top and bottom of the satellite and extend outwardly from the top and bottom of the satellite in the open configuration. The height of the perimeter sidewall (14) is selected such that the satellite has a generally oblate configuration. Each solar array panel has a surface area substantially equal to that of the satellite cross-sectional area. The hinges (44,46) are mounted on pintles (48,50) extending from a solar array drive motor (58) which rotates the solar panel about the axis defined by the pintles to provide one axis sun tracking. The solar array panels are pivoted about the axes of the hinges until substantially parallel to the top and bottom of the satellite to form a compact, stackable configuration of the satellite for stowage. Three couplers (54A,54B,54C) positioned along the perimeter wall couple the satellite to similarly configured satellites within the fairing of a launch vehicle. The coupled satellites form a stack having three load-bearing columns consisting of the satellite couplers. In the stacked configuration, the couplers of one satellite are attached to the couplers of adjacent satellites by bolts restrained within non-explosive separation nuts (106). Pre-loaded compression springs (144A,144B) extend between the couplers of adjacent satellites. After the stack of satellites separates from the fairing (52), each satellite is successively deployed from the stack, starting with the top-most satellite. Deployment begins by activating the non-explosive separation nuts (106) in the couplers of the top-most satellite. Thereafter, the pre-loaded compression springs (144A,144B) extending between the coupling devices of the top-most satellite and the subjacent satellite (or, for the bottom-most satellite, the subjacent booster stage) accelerate the top-most satellite away from the stack and booster stage.
摘要:
Systems and methods are disclosed herein for a reconfigurable faceted reflector for producing a plurality of antenna patterns. The reconfigurable reflector includes a backing structure, a plurality of adjusting mechanisms mounted to the backing structure, and a plurality of reflector facets. Each of the plurality of reflector facets is coupled to a respective one of the plurality of adjusting mechanisms for adjusting the position of the reflector facet with which it is coupled. The reflector facets are arranged to produce a first antenna pattern of the plurality of antenna patterns. By adjusting the plurality of adjusting mechanisms, the position of each of the reflector facets coupled to the respective one of the plurality of adjusting mechanisms is adjusted so that the reflector facets are arranged to produce a second antenna pattern of the plurality of antenna patterns.
摘要:
Systems and methods are described herein for a hybrid liquid propellant rocket engine. In an embodiment, the engine includes a first pump powered by a first turbine, a second pump powered by a second turbine, and a gas generator. An output of the gas generator is connected to the first turbine and the second turbine. The engine further includes a third pump powered by a third turbine, a fourth pump powered by a fourth turbine, and a nozzle having an expander cycle in a wall and a combustion chamber. An output of the third pump is connected to the expander cycle and an output of the wall is connected to the third turbine and the fourth turbine. An output of the fourth pump, an output of the third turbine, and an output of the fourth turbine are connected to the combustion chamber.