Abstract:
An optical coupling includes a planar tapered waveguide coupling element having a first end opposite a second end, a tapered waveguide positioned within a planar substrate, the tapered waveguide comprising a waveguide diameter that is larger at the first end than at the second end. An optical pathway is disposed within the tapered waveguide and extends between the first end and the second end. The tapered waveguide is tapered from the first end to the second end such that the waveguide diameter transitions a light beam traveling along the optical pathway from a first beam size at the first end to a second beam size at the second end.
Abstract:
Backplane optical connectors and optical connections are disclosed herein. In one embodiment, a backplane optical connector includes a ferrule element that includes a body portion having optical interface, at least two bores positioned through the body portion, at least two posts extending from the body portion, and a fiber inlet portion extending from the body portion. The fiber inlet portion includes a fiber receiving opening. The backplane optical connector further includes a magnet disposed within each bore of the at least two bores, and a bias member coupled to the at least two posts.
Abstract:
A cap apparatus is mounted to a connector having a ferrule supporting optical fiber(s). A sealing apparatus is cooperatively configured with the cap apparatus for protecting an end face of the ferrule. The cap apparatus includes a body having opposite ends between which a cavity extends. The opposite ends of the body respectively define first and second openings to the cavity. A portion of the fiber optic connector extends through the first opening and into the cavity. The cap apparatus includes a cover mounted to the body and at least partially obstructing the second opening, wherein the end face of the ferrule is positioned within the cavity at a location spaced from the cover. The sealing apparatus is positioned between at least a portion of the cover and the end face of the ferrule.
Abstract:
The application provides a connector device for connecting at least one optical fiber endpiece to an electric terminal. The connector device comprises a printed circuit board and an electric connector plug connectable to an electric terminal. A fiber end piece holder is mounted or mountable in an orientation enabling light propagation parallel to the printed circuit board, whereas an optoelectronic chip comprising optoelectronic active elements enables emission and/or detection of light substantially normal to the printed circuit board. A layered optical stack is provided on the printed circuit board, which layered optical stack comprises a reflection surface for changing the propagation direction between parallel and normal to the printed circuit board.
Abstract:
A cap apparatus is mounted to a connector having a ferrule supporting optical fiber(s). A sealing apparatus is cooperatively configured with the cap apparatus for protecting an end face of the ferrule. The cap apparatus includes a body having opposite ends between which a cavity extends. The opposite ends of the body respectively define first and second openings to the cavity. A portion of the fiber optic connector extends through the first opening and into the cavity. The cap apparatus includes a cover mounted to the body and at least partially obstructing the second opening, wherein the end face of the ferrule is positioned within the cavity at a location spaced from the cover. The sealing apparatus is positioned between at least a portion of the cover and the end face of the ferrule.
Abstract:
A connector device for connecting optical fiber endpieces comprising an optoelectronic chip, a fiber end piece holder and a reflection surface. The chip is oriented for emitting and/or detecting optical signals along a first propagation direction normal to a circuit board. The reflection surface changes a propagation direction of optical signals from the first propagation direction to a different, second propagation direction and/or vice versa. The connector device comprises a layered optical stack mounted to the circuit board and designed for propagation of optical signals along the first propagation direction. The connector device further comprises a coupling adapter piece mounted to the layered optical stack that holds and/or secures the fiber end piece holder in an orientation enabling propagation of signals radiation along the second propagation direction. The reflection surface for changing between both propagation directions is comprised in the coupling adapter piece.
Abstract:
Backplane optical connectors and optical connections are disclosed herein. In one embodiment, a backplane optical connector includes a ferrule element that includes a body portion having optical interface, at least two bores positioned through the body portion, at least two posts extending from the body portion, and a fiber inlet portion extending from the body portion. The fiber inlet portion includes a fiber receiving opening. The backplane optical connector further includes a magnet disposed within each bore of the at least two bores, and a bias member coupled to the at least two posts.