摘要:
Method and apparatus for receiving high speed downlink shared channel (HS-DSCH) transmissions are disclosed. An HS-DSCH medium access control (MAC-ehs) entity receives MAC-ehs protocol data units (PDUs) via a high speed downlink shared channel (HS-DSCH) while in one of Cell_FACH, Cell_PCH, and URA_PCH states. The reordering PDUs included in the MAC-ehs PDUs may be sent to a next processing entity without performing reordering of the PDUs. A certain reordering queue may enter a suspend state upon occurrence of a triggering event and MAC-ehs PDUs distributed to the reordering queue in the suspend state may be forwarded to the next processing entity without performing reordering. MAC-ehs reset procedure may be extended for a certain transmission such that the MAC-ehs reset is performed after receiving a MAC-ehs PDU in a target cell.
摘要:
A method of implementing a state transition from a first state to a second state for a wireless transmit receive unit, WTRU, the method comprising monitoring whether a state transition condition for the WTRU has occurred; checking whether the second state supports high speed downlink shared channel, HS-DSCH, reception, on condition that the state transition condition has occurred; releasing HS_DSCH resources on the condition that the second state does not support HS-DSCH reception. In another embodiment, a method of managing a state transition for a wireless transmit receive unit, WTRU, the method comprising setting a single HS_DSCH_RECEPTION_GENERAL variable indicating a status of high speed downlink shared channel, HS-DSCH, reception for any of the states Cell_FACH, Cell_PCH, URA_PCH and Cell_DCH; and when the HS_DSCH_RECEPTION_GENERAL is set to FALSE, stopping HS-DSCH reception,clearing radio network temporary identifiers, RNTIs, resetting a medium access control, MAC, entity, releasing all hybrid automated response request HARQ resources, and clearing any stored information elements related to HARQ information.
摘要:
Methods and apparatuses for versatile medium access control (MAC) multiplexing in evolved HSPA are disclosed. More particularly, methods for downlink optimization of the enhanced high speed MAC (MAC-ehs) entity and uplink optimization of the MAC-i/is entity are disclosed. Apparatuses for using the optimized downlink and uplink MAC entities are also disclosed.
摘要:
Methods and apparatuses for versatile medium access control (MAC) multiplexing in evolved HSPA are disclosed. More particularly, methods for downlink optimization of the enhanced high speed MAC (MAC-ehs) entity and uplink optimization of the MAC-i/is entity are disclosed. Apparatuses for using the optimized downlink and uplink MAC entities are also disclosed.
摘要:
Handling cell reselections by initiating a radio resource control (RRC) connection procedure from a user equipment (UE); and while the UE is in idle mode: performing cell reselection; determining whether high speed downlink shared channel (HS-DSCH) reception is ongoing based on received HS-DSCH common system information, wherein: if HS-DSCH reception is ongoing, performing a medium access control (MAC) reset; else, setting a HS-DSCH reception variable to TRUE and start receiving the HS-DSCH.
摘要:
Cell update while in a Cell_FACH state. After selecting a target cell, system information is read from the target cell including high speed downlink shared channel (HS-DSCH) common system information. A radio network temporary identity (RNTI) received in a source cell is cleared and a variable HS_DSCH_RECEPTION is set to TRUE. An HS-DSCH medium access control (MAC-hs or MAC-ehs) entity is configured based on the HS-DSCH common system information. High speed downlink packet access (HSDPA) transmission is then received in the target cell. A CELL UPDATE message is sent to notify of a cell change. The HSDPA transmission may be received using a common H-RNTI broadcast in the system information, a reserved H-RNTI as requested in a CELL UPDATE message, or a temporary identity which is a subset of a U-RNTI. The MAC-hs or MAC-ehs entity may be reset.
摘要:
A method and apparatus for generating and processing a high speed downlink shared channel (HS-DSCH) medium access control (MAC-ehs) protocol data unit (PDU) are disclosed. MAC-ehs service data units (SDUs) are multiplexed based on a logical channel identity. Reordering PDUs are generated from the multiplexed MAC-ehs SDUs. A reordering PDU includes at least one MAC-ehs SDU and/or at least one MAC-ehs SDU segment. A MAC-ehs SDU is segmented on a priority class basis if a MAC-ehs SDU does not fit into a reordering PDU. A MAC-ehs PDU is generated including at least one reordering PDU. The MAC-ehs SDUs may be stored in priority queues before generating the reordering PDUs. Alternatively, the reordering PDUs may be generated from the multiplexed MAC-ehs SDUs. Alternatively, the received MAC-ehs SDUs may be buffered in a corresponding buffer for each logical channel before multiplexed based on a logical channel identity, or reordering PDUs are generated.
摘要:
A method and apparatus for generating and processing a high speed downlink shared channel (HS-DSCH) medium access control (MAC-ehs) protocol data unit (PDU) are disclosed. MAC-ehs service data units (SDUs) are multiplexed based on a logical channel identity. Reordering PDUs are generated from the multiplexed MAC-ehs SDUs. A reordering PDU includes at least one MAC-ehs SDU and/or at least one MAC-ehs SDU segment. A MAC-ehs SDU is segmented on a priority class basis if a MAC-ehs SDU does not fit into a reordering PDU. A MAC-ehs PDU is generated including at least one reordering PDU. The MAC-ehs SDUs may be stored in priority queues before generating the reordering PDUs. Alternatively, the reordering PDUs may be generated from the multiplexed MAC-ehs SDUs. Alternatively, the received MAC-ehs SDUs may be buffered in a corresponding buffer for each logical channel before multiplexed based on a logical channel identity, or reordering PDUs are generated.
摘要:
Methods and apparatuses for versatile medium access control (MAC) multiplexing in evolved HSPA are disclosed. More particularly, methods for downlink optimization of the enhanced high speed MAC (MAC-ehs) entity and uplink optimization of the MAC-i/is entity are disclosed. Apparatuses for using the optimized downlink and uplink MAC entities are also disclosed.