Abstract:
A network element with a centralized switch fabric is able to support multiple switching functions while meeting established performance requirements by using a control system based on an embedded signal status protocol. Generally, each input signal within a transmission path is monitored to derive signal status information, which is then individually encoded and embedded within the input signal. The embedded signal status can be decoded and provided as input to control logic for processing at any point within the transmission path, as necessary. In the case of a centralized switch fabric, the control logic resolves an address of a single input signal based on the embedded signal status and provides this resolved address to the switch fabric so that the appropriate input signal can be selected. In the present invention, the control logic may be configured to support any given application, e.g., "path-in-line" protection switching, whereby each configuration of control logic constitutes an application control set that supports the performance requirements of that given application.
Abstract:
A network element with a centralized switch fabric is able to support multiple switching functions while meeting established performance requirements by using a control system based on an embedded signal status protocol. Generally, each input signal within a transmission path is monitored to derive signal status information, which is then individually encoded and embedded within the input signal. The embedded signal status can be decoded and provided as input to control logic for processing at any point within the transmission path, as necessary. In the case of a centralized switch fabric, the control logic resolves an address of a single input signal based on the embedded signal status and provides this resolved address to the switch fabric so that the appropriate input signal can be selected. In the present invention, the control logic may be configured to support any given application, e.g., "path-in-line" protection switching, whereby each configuration of control logic constitutes an application control set that supports the performance requirements of that given application.
Abstract:
Distributed switch fabrics can support multiple switching functions while meeting established performance requirements by using a control architecture based on multiple layers of signal status carried within signals transported through the distributed switch fabrics. More specifically, a method and apparatus is provided for controlling the selection of signals through distributed switch fabrics by deriving signal status information for the signals at any point along a transmission path and embedding the signal status information in each of the signals using multiple signal status layers. Each of the signals carries its respective signal status information as it propagates along the transmission path, so that the embedded signal status information can be selectively extracted from any of the multiple signal status layers to facilitate a selection decision at any of the distributed switch fabrics. The multiple layers of signal status can be used to provide a cumulative signal status of a particular signal as it propagates along the transmission path or the multiple layers can be used to support various combinations of status control, such as each layer being used to track a different level or type of status for the signal.
Abstract:
Distributed switch fabrics can support multiple switching functions while meeting established performance requirements by using a control architecture based on multiple layers of signal status carried within signals transported through the distributed switch fabrics. More specifically, a method and apparatus is provided for controlling the selection of signals through distributed switch fabrics by deriving signal status information for the signals at any point along a transmission path and embedding the signal status information in each of the signals using multiple signal status layers. Each of the signals carries its respective signal status information as it propagates along the transmission path, so that the embedded signal status information can be selectively extracted from any of the multiple signal status layers to facilitate a selection decision at any of the distributed switch fabrics. The multiple layers of signal status can be used to provide a cumulative signal status of a particular signal as it propagates along the transmission path or the multiple layers can be used to support various combinations of status control, such as each layer being used to track a different level or type of status for the signal.