Abstract:
A method includes receiving a first shaft (16) speed, measuring a parameter indicative of a PTO shaft (20) speed, determining a PTO shaft (20) acceleration by monitoring the parameter indicative of the PTO shaft (20) speed over time, determining, via a plurality of estimators (262), a plurality of normalized PTO clutch (60) gear ratios, wherein each of the plurality of estimators (262) determines one of the plurality of normalized PTO clutch (60) gear ratios based, at least in part, on the first shaft (16) speed, the PTO shaft (20) speed, and one of a plurality of known PTO transmission gear ratio options, and selecting one of the plurality of estimators (262), when the PTO shaft (20) acceleration drops below a threshold value, wherein the normalized PTO clutch (60) gear ratio determined by the selected estimator is about 1.
Abstract:
A control device that controls an automatic transmission is provided, in which device the automatic transmission includes a variator disposed in a power transmission path between a driving source and a driving wheel of a vehicle, and a friction engaging element disposed between the variator and the driving wheel, in a manner capable of transmitting a power disconnectably via the power transmission path. The control device increases a speed ratio of the variator toward a predetermined target speed ratio with disengaging the friction engaging element during a vehicle stop of the vehicle, and executes a learning regarding a hydraulic control of the friction engaging element when the friction engaging element is disengaged during the vehicle stop. The control device decreases the target speed ratio at a time of learning when the learning is executed during the vehicle stop, compared to a time of vehicle stop other than the time of learning.
Abstract:
A vehicle speed change arrangement that can perform automatic speed change using a manual transmission without modification. The vehicle speed change arrangement includes shift blocks (B1 to B6) such that the shift block of a reverse-1st speed, the shift block of 4th speed-5th speed, the shift block of 2nd speed-3rd speed, and the shift block of 6th speed are arranged in this sequence in a select operation direction. The vehicle speed change arrangement also includes first to fourth shift levers (24a to 24b) for shifting the shift blocks, select actuators (30a, 30b) for selecting the first to fourth shift levers, a first shift actuator (31a) for shifting the first or second shift lever, a second shift actuator (31b) for shifting the third or fourth shift lever, a gear disengagement determination unit (50) for determining whether a gear is disengaged when the gear engagement or disengagement is made using the first and second shift actuators, and a drive unit (51) for driving the gear engaging shift actuator to operate the gear engaging shift actuator when gear disengagement is determined by the gear disengagement determination unit.
Abstract:
The object of the invention is to impart a suitable target slip amount depending on a state of change in an output from a driving power source (engine 2) to a torque converter 1, while simplifying control. A controller has an input torque change rate detection means (step S1 of Fig. 2 ) for detecting an engine torque change rate ΔTe that is the output, and a target slip addition amount calculation means (step S2 of Fig. 2 ) for calculating a negative value as an addition amount Δslip, when the engine torque change rate ΔTe is less than or equal to a predetermined value that is a positive value, and for calculating a positive value as the addition amount Δslip, when the engine torque change rate is greater than the predetermined value. The controller 10 is configured to set the target slip amount TSLIP of a lockup clutch 8 by arithmetic processing that integrates the addition amount Δslip, determined based on the detected engine torque change rate ΔTe, every control period (step S3 of Fig. 2 ).
Abstract:
A maximum flow calculating unit (166) calculates a maximum amount (Qmax) of hydraulic fluid that can flow into or out of an input-side hydraulic cylinder (42c) when a shift control command signal (S T ) is set to a reference DUTY value, based on an estimated valve pressure difference (ΔP) calculated by an estimated pressure difference calculating unit (156), and a post-guard target sheave position setting unit (170) performs a guard process for restricting the amount of change of the sheave position, using a guard value (ΔXg) calculated by a guard value calculating unit (168) based on the maximum flow amount (Qmax), so as to set a post-guard target sheave position (Xtg). Since the thus set target sheave position (Xtg) does not undergo excessive large changes nor excessively small changes during shifting, a target value for shifting is set so that a feedforward controlled variable determined based on the amount of change of the target sheave position (Xtg) becomes an appropriate value.
Abstract:
The method involves determining a first distance (TA) from the vehicle (F) to a target object (Z), a vehicle range (deltaskupplaus) assuming no interaction between engine and drive wheels, a second distance (sziel) depending on the first distance and a definable tolerance range (DSZIEL) so the second distance and tolerance sum to less than the first distance, determining a gear ratio so the engine is operated in shut-off mode if the gear is engaged with the drive wheels and engine and ensuring engagement if the range exceeds the sum of the second range and tolerance. Independent claims are also included for the following: (a) a controller for a vehicle; (b) a vehicle; and (c) a computer program for running on a controller for implementing the inventive method.
Abstract:
Die Erfindung betrifft eine hydraulische Steuerungsvorrichtung (1) für ein automatisiertes Doppelkupplungsgetriebe, das eine erste Kupplung (9) mit einem ersten Teilgetriebe und eine zweite Kupplung (13) mit einem zweiten Teilgetriebe sowie ein Schaltsystem (12) zum Ein-/Auslegen von Gängen der zwei Teilgetriebe aufweist. Die Steuerungsvorrichtung (1) zeichnet sich dadurch aus, dass ein erstes Umschaltventil (7) in einer Stellung A I ein erstes Regelventil (3) mit der ersten Kupplung (9) verbindet und von dem Schaltsystem (12) trennt und in einer Stellung B I das erste Regelventil (3) mit dem Schaltsystem (12) verbindet und von der ersten Kupplung (9) trennt, und dass ein zweites Umschaltventil (8) in einer Stellung A II ein zweites Regelventil (4) mit der zweiten Kupplung (13) verbindet und von dem Schaltsystem (12) trennt und in einer Stellung B II das zweite Regelventil (4) mit dem Schaltsystem (12) verbindet und von der zweiten Kupplung (13) trennt. Des weiteren betrifft die Erfindung ein Verfahren zum Steuern des Doppelkupplungsgetriebes mit der Steuervorrichtung (1).