Abstract:
This adhesive contains an epoxy compound, a cationic catalyst, and an acrylic resin that includes acrylic acid and an acrylic acid ester having a hydroxyl group. The acrylic acid in the acrylic resin reacts with the epoxy compound, creating a link between the acrylic resin island part and the epoxy compound sea part, and strengthening the anchoring effect with respect to the epoxy compound sea part by roughening the surface of an oxide film. Furthermore, the hydroxyl-group-containing acrylic acid ester in the acrylic resin becomes electrostatically adhesive to wiring due to the polarity of the hydroxyl group. Excellent adhesive strength can be obtained by adhering, in this way, the entire cured product composed of the acrylic resin island part and the epoxy compound sea part to the oxide film.
Abstract:
A method and a structure is provided for mounting a semiconductor device by the bump technique using compound metallic ultra-fine particles each comprising a core portion consisting substantially of a metallic component, and a coating layer chemically bound to the core portion and comprising an organic substance. The method and the structure are characterized by using one of, or a combination of, the following two bump technologies: 1) Forming under bump metals from the compound metallic ultra-fine particles, and forming ordinary solder balls on the under bump metals. 2) Using paste balls comprising the compound metallic ultra-fine particles, instead of ordinary solder balls.
Abstract:
An adhesive for semiconductor parts, comprising, as a base polymer, at least one cyclic structure-containing thermoplastic polymer selected from the group consisting of (a) a cycloolefin polymer and (b) an aromatic-condensed polymer having a repeating unit of an aromatic ring in its main chain, and having a number average molecular weight of 1,000 to 500,000, an adhesive sheet formed of the adhesive, a semiconductor part package making use of the adhesive, and a production process of the package.
Abstract:
A conductive connecting member formed on a bonded face of an electrode terminal of a semiconductor or an electrode terminal of a circuit board, the conductive connecting member comprising a porous body formed in such manner that a conductive paste containing metal fine particles (P) having mean primary particle diameter from 10 to 500 nm and an organic solvent (S), or a conductive paste containing the metal fine particles (P) and an organic dispersion medium (D) comprising the organic solvent (S) and an organic binder (R) is heating-treated so as for the metal fine particles (P) to be bonded, the porous body being formed by bonded metal fine particles (P) having mean primary particle diameter from 10 to 500 nm, a porosity thereof being from 5 to 35 volume%, and mean pore diameter being from 1 to 200 nm.
Abstract:
A method and composition for joining flip chips back-side-up with respect to substrates, comprises applying an adhesive between the active side of the flip chip and the substrate. The adhesive is a conductive silicone pressure sensitive adhesive containing (i) a silicone resin, (ii) a siloxane gum, (iii) a conductive particulate material and, optionally, (iv) a peroxide catalyst. Suitable conductive particulate materials are silver-clad glass fibers; spherical gold particles; spherical hollow glass microspheres coated with silver, gold, nickel or copper; or spherical particles of metal alloys of Sn/Cu, Pb/Sn or Au/Sn. The adhesive is applied as a ball or bump itself, in conjunction with a solder ball or bump or in the form of tape sandwiched between the flip chip and the substrate.
Abstract:
This adhesive contains an epoxy compound, a cationic catalyst, and an acrylic resin that includes acrylic acid and an acrylic acid ester having a hydroxyl group. The acrylic acid in the acrylic resin reacts with the epoxy compound, creating a link between the acrylic resin island part and the epoxy compound sea part, and strengthening the anchoring effect with respect to the epoxy compound sea part by roughening the surface of an oxide film. Furthermore, the hydroxyl-group-containing acrylic acid ester in the acrylic resin becomes electrostatically adhesive to wiring due to the polarity of the hydroxyl group. Excellent adhesive strength can be obtained by adhering, in this way, the entire cured product composed of the acrylic resin island part and the epoxy compound sea part to the oxide film.
Abstract:
A thermal interface material includes at least one polymer, at least one thermally conductive filler; and at least one ion scavenger. In some embodiments, the ion scavenger is a complexing agent selected from the group consisting of: nitrogen containing complexing agents, phosphorus containing complexing agents, and hydroxyl carboxylic acid based complexing agents.