Abstract:
Embodiments of the invention describe apparatuses, optical systems, and methods for utilizing a dynamically reconfigurable optical transmitter. A laser array outputs a plurality of laser signals (which may further be modulated based on electrical signals), each of the plurality of laser signals having a wavelength, wherein the wavelength of each of the plurality of laser signals is tunable based on other electrical signals. An optical router receives the plurality of (modulated) laser signals at input ports and outputs the plurality of received (modulated) laser signals to one or more output ports based on the tuned wavelength of each of the plurality of received laser signals. This reconfigurable transmitter enables dynamic bandwidth allocation for multiple destinations via the tuning of the laser wavelengths.
Abstract:
Apparatus for an optical communications network has optical paths for optical traffic, and optical ports, one of which is an unused output port. A security monitoring system has a blocking part coupled removably to the unused output port to occupy it to prevent unauthorized access. An optical detector can detect optical signals passing through the unused output port to the blocking part, and there is alarm circuitry configured to output an alarm signal based on the detecting of the optical signals. This monitoring can help make the node more secure from interference or from eavesdropping. By blocking the port, the monitoring can be independent of the type of signals on the optical paths. The system can be passive or active, and does not require a change in the installed node configuration and so can be added easily to existing infrastructure.
Abstract:
The present invention relates to the field of communications technologies, and discloses an optical transmitter and a transmission method, and an optical receiver and a reception method. When a first laser in N lasers is switched to a second idle laser in M lasers, a wavelength of a wavelength-selective optical element to which the first laser is coupled is adjusted from a first wavelength to a second wavelength, and the second wavelength is different from the N wavelengths. Similarly, when a first optical receiver in N optical receivers is switched to a second idle optical receiver in M optical receivers, a wavelength of a wavelength-selective optical element to which the first optical receiver is coupled is adjusted from a first wavelength to a second wavelength, and the second wavelength is different from the N wavelengths. According to the foregoing technical solution, in embodiments of the present invention, complexity of an optical transmitter and an optical receiver is decreased, an extra power loss is reduced, and output optical power is improved.
Abstract:
Embodiments of the present invention provide a reconfigurable optical add-drop multiplexer apparatus, and relate to the field of communications, so as to solve the problem of inconvenient line failure detection. The ROADM apparatus includes: a first ROADM, a second ROADM, one splitting coupler, four optical amplifiers, and four couplers. The embodiments of the present invention are used in a communications line architecture.
Abstract:
In order to achieve a highly reliable reconfigurable optical add/drop multiplexing (ROADM) device, this optical multiplexing and demultiplexing device is provided with: a first wavelength selection switch which multiplexes, by wavelength, and outputs optical signals contained in a first wavelength multiplexed optical signal; a second wavelength selection switch which multiplexes, by wavelength, and outputs optical signals contained in a second wavelength multiplexed optical signal; an optical switch which, on the basis of the states of the first wavelength selection switch and the second wavelength selection switch, outputs the first wavelength multiplexed optical signal and the second wavelength multiplexed optical signal to the first wavelength selection switch or the second wavelength selection switch; and a first coupler which couples together the output from the first wavelength selection switch and the output from the second wavelength selection switch.
Abstract:
The disclosure includes an apparatus comprising: a path computation element (PCE) comprising a processor configured to: receive a path computation element protocol (PCEP) path computation request from a path computation client (PCC), wherein the path computation request comprises an impairment validation request that directs the PCE to perform an impairment validation of a network path; after receiving the path computation request, compute a network path; and perform an impairment validation of the network path specified by the impairment validation request. In another embodiment, the disclosure includes a method comprising: sending, by a PCC a PCEP path computation request to a PCE, wherein the request directs the PCE to perform routing and wavelength assignment (RWA) and a first impairment validation of a network path, wherein the request comprises a type of signal quality of the network path which indicates the first type of impairment validation to be performed.
Abstract:
The present invention discloses a communication method applied to a multi-wavelength passive optical network system, the multi-wavelength passive optical network system includes an optical line terminal OLT and at least one optical network unit ONU, and the ONU at least includes a first port and a second port. The method includes: receiving, by the ONU by using the first port or the second port, a wavelength switching request message delivered by the OLT, where the wavelength switching request message carries second wavelength channel information and port information that is of the second port; switching, by the ONU, an operating wavelength channel of an optical module connected to the second port from a first wavelength channel to a second wavelength channel corresponding to the second wavelength channel information; and sending, by the ONU, a wavelength switching complete message to the OLT by using the first port. According to the communication method provided in embodiments of the present invention, quick wavelength switching is performed based on the second port, so that a service is not interrupted in a wavelength switching process, and user experience is better.
Abstract:
A wavelength converter includes first silicon waveguides and second silicon waveguides intersecting the first silicon waveguides to form an arrayed waveguide. The arrayed waveguide receives optical data signals at the same wavelength at a first input and optical pump signals at different wavelengths at a second input. Microring resonators evanescently couple different ones of the first silicon waveguides to different ones of the second silicon waveguides. Each microring resonator is tuned to the wavelength of the optical data signals or one of the wavelengths of the optical pump signals, so that different combinations of the optical data signals and the optical pump signals are provided at an output of the arrayed waveguide. A non-linear optical media converts the wavelength of each combined optical signal at the output of the arrayed waveguide to yield wavelength converted signals each having a new dedicated wavelength.
Abstract:
The present invention relates to the network communications field, and specifically discloses a method for establishing a wavelength cross-connection, including: determining, by a first node, a spectrum bandwidth of a wavelength connection, and obtaining a first available center frequency set of a first link according to the spectrum bandwidth; obtaining, by the first node, first available center frequency set information and spectrum bandwidth information, and sending a request message carrying the first available center frequency set information and the spectrum bandwidth information to the neighboring node in the direction from the first node to the second node; and receiving, by the first node, a response message, extracting center frequency information carried in the response message, obtaining a center frequency of the wavelength connection, and establishing a wavelength cross-connection based on a spectrum range determined by the center frequency and the spectrum bandwidth.