Abstract:
The present disclosure discloses a silicon nanowire chip and silicon nanowire chip-based mass spectrometry detection method. The detection method includes the following steps: step 1 of manufacturing a silicon nanowire chip, comprising: subjecting a monocrystalline silicon wafer to a surface washing pretreatment, a metal-assisted etching and a post-alkali etching to obtain a silicon nanowire chip with a tip, and performing a surface chemical modification or a nanomaterial modification on the silicon nanowire chip; step 2 of evaluating mass spectrometry performance of the silicon nanowire chip; and step 3 of performing a tip-contact sampling and in-situ ionization mass spectrometry detection. The present disclosure fully utilizes the nano-structure properties and semiconductor properties of the silicon nanowire chip to integrate contact-type extractive transfer and matrix-free mass spectrometry detection, the collection, pretreatment and detection processes of complex samples are thus greatly simplified. The manufactured silicon nanowire chip of the present disclosure is capable of having functions of adsorption, extraction and mass spectrometry detection simultaneously, and it also can retain in-situ information of samples with spatial heterogeneity.
Abstract:
Methods, devices and systems for analyzing precious samples of cells, including single cells are provided. The methods, devices, and systems in various embodiments of the invention are used to assess genomic heterogeneity, which has been recognized as a central feature of many cancers and plays a critical role in disease initiation, progression, and response to treatment. The methods devices and systems are also used to analyze embryonic biopsies for preimplantation genetic diagnosis (PGD). In one embodiment, the devices, systems and methods provided herein allow for the construction of genomic and RNA-seq libraries without a pre-amplification step.
Abstract:
A method for producing a plurality of measurement regions on a chip, and a chip having a plurality of measurement regions which is obtainable by the method.
Abstract:
Microelectromechanical (MEMS) devices and associated methods are disclosed. Piezoelectric MEMS transducers (PMUTs) suitable for integration with complementary metal oxide semiconductor (CMOS) integrated circuit (IC), as well as PMUT arrays having high fill factor for fingerprint sensing, are described.
Abstract:
Stress relief structures and methods that can be applied to MEMS sensors requiring a hermetic seal and that can be simply manufactured are disclosed. The system includes a sensor having a first surface and a second surface, the second surface being disposed away from the first surface, the second surface also being disposed away from a package surface and located between the first surface and the package surface, a number of support members, each support member extending from the second surface to the package surface, the support members being disposed on and operatively connected to only a portion of the second surface. The support member are configured to reduce stress produced by package-sensor interaction.
Abstract:
The invention relates to a measurement system including a network of nanoelectromechanical system (NEMS) resonators, characterized in that: each one of said resonators includes: an electrostatic activation device capable of generating a vibration of a beam exposed to said excitation signal, at least one piezoresistive stress gauge made of a doped semiconducting material, extending from the beam so as to detect a movement of said beam, the variation in the electrical resistance of said at least one gauge supplying an output signal; said network includes at least two groups of resonators, each group including at least two resonators having an identical empty resonance frequency, each group of resonators having an empty resonance frequency different from that of each other group; the resonators forming each group are connected in parallel; the groups of resonators forming said network are connected in parallel; said system includes a reading device designed to supply an excitation signal at the network input and to determine the resonance frequency of a group of resonators which is selected by injecting, into said excitation signal, a frequency component corresponding to the empty resonance frequency of each selected group of resonators, and by identifying, in the output signal of the network, a resonance frequency component of the selected group of resonators.
Abstract:
Disclosed is a micro-electro-mechanical switch, including a substrate having a gate connection, a source connection, a drain connection and a switch structure, coupled to the substrate. The switch structure includes a beam member, an anchor and a hinge. The beam member having a length sufficient to overhang both the gate connection and the drain connection. The anchor coupling the switch structure to the substrate, the anchor having a width. The hinge coupling the beam member to the anchor at a respective position along the anchor's length, the hinge to flex in response to a charge differential established between the gate and the beam member. The switch structure having gaps between the substrate and the anchor in regions proximate to the hinges.