Abstract:
An improved method and related apparatus for detecting bacteria viability and drug effects using metabolic monitoring. A fluorescent material which is quenched by oxygen is co-localized with the target bacteria, and fluorescence signal is detected at the co-localized places. In some embodiments, the fluorescent material is a fluorescent nanoparticle mixed with the target bacteria in the sample, and co-localization is enhanced using centrifugation, electrophoresis, microflow path modified with antibodies, magnetic force, etc. In some other embodiments, the fluorescent material is a fluorescent film or 3-D matrix immobilized in the bacterial culture chamber, and bacteria in the sample is gathered into localized regions of the bacteria culture chamber where the fluorescent film or 3-D matrix is present by ways of centrifugation, electrophoresis or microflow path. Plasmonic nanoparticles with a metal core and plasmonic film with a metal film may be used as the fluorescent nanoparticles and fluorescent film.
Abstract:
L'invention porte sur un dispositif cathodoluminescent (1), comportant une couche luminescente (2) présentant une première face (3), dite face avant, destinée à recevoir des électrons incidents, ladite couche luminescente (2) étant adaptée à absorber des électrons incidents et à émettre en réponse un rayonnement lumineux, caractérisé en ce que la face avant (3) de la couche luminescente (2) est revêtue d'une couche comportant des nanofils (4) électriquement conducteurs.
Abstract:
La présente invention concerne un procédé pour augmenter le rendement quantique interne de photoluminescence de nanoparticules formées en tout ou partie d'un nanocristal de type Ag x M y M' z S 0.5x+y+1,5z (I), comprenant au moins les étapes consistant en : (1) disposer de nanoparticules formées en tout ou partie d'un nanocristal dont la composition chimique répond à la formule (I) :
Ag x M y M' z S 0.5x+y+1.5z (I)
lesdites nanoparticules étant fonctionnalisées en surface par un ligand organique L1 différent d'un ligand de type phosphine ; lesdits nanocristaux de composition chimique de formule (I) étant préalablement préparés via un procédé mettant en oeuvre une unique étape de traitement thermique ; et (2) mettre en présence lesdites nanoparticules avec au moins un composé ligand L2 de type phosphine de formule générale PR 3 (II), ou sa forme oxydée O=PR 3 (II'), dans des conditions propices à un échange, au moins en partie, des ligands organiques L1 par lesdits ligands de type phosphine L2.
Abstract translation:纳米颗粒的光致发光内部量子效率在AgxMyM'zS0.5x + Y + 1.5Z(I)类型的纳米晶体的全部或部分形成,包括在至少以下阶段:在所有或部分(1)形成具有纳米颗粒可用 的纳米晶体,其中所述化学组成对应于式(I):AgxMyM'zS0.5x + Y + 1.5Z(I); 所述纳米颗粒被在表面通过在有机配体L1从膦类型的配体官能化不同; worin具有式(I)的化学组成是通过仅采用热处理的单阶段工艺事先制备纳米晶体; 和(2)使所述纳米颗粒一起和至少一个配体的化合物L2膦类型通式的PR3(II)或它的氧化形式O═PR3(II“),有利于交换,至少部分的条件下, 有机配体的L1通过所述配体的膦型L2的。
Abstract:
The present invention relates to nanosystems comprising atomic quantum clusters (AQCs) of at least two different sizes encapsulated in a cavity with an inner diameter less than or equal to 10 nm for the use thereof as luminescent nanosystems, particularly for the use thereof as fluorescent nanosystems; as well as the method for obtaining and detecting them. The invention also relates to the use of said luminescent nanosystems as a fluorescent probe, biomarker or contrasting agent.
Abstract:
Silicate luminous material and preparation method thereof are provided. The luminous material is represented by the following chemical formula: Zn 2-x SiO4:Mn x @SiO 2 @M y , wherein M represents at least one element selected from the group consisting of Ag, Au, Pt, Pd and Cu, and y is molar ratio of M to Si in silicate luminous materials, and 0 -2 . @ is coating; M is inner core; SiO 2 is middle shell; Zn 2-x SiO 4 :Mn x is outer shell. The core-shell luminous materials coating metal particle improve internal quantum efficiency, increase luminous intensity, and they are stable. The luminous materials can be controlled in the aspects of size and appearance and are appropriate to be used in coating screen process and improving display effect for sphere appearance with bulk density. Precipitation methods can not only decrease reaction temperature, but also have features of simple process, low equipment requirement, non-pollution and are controlled easily.
Abstract:
Optical conversion layers based on semiconductor nanoparticles for use in lighting devices, and lighting devices including same. In various embodiments, spherical core/shell seeded nanoparticles (SNPs) or nanorod seeded nanoparticles (RSNPs) are used to form conversion layers with superior combinations of high optical density (OD), low re-absorbance and small FRET. In some embodiments, the SNPs or RSNPs form conversion layers without a host matrix. In some embodiments, the SNPs or RSNPs are embedded in a host matrix such as polymers or silicone. The conversion layers can be made extremely thin, while exhibiting the superior combinations of optical properties. Lighting devices including SNP or RSNP-based conversion layers exhibit energetically efficient superior prescribed color emission.
Abstract:
The present invention concerns an illumination system comprising radiation source that when operational emits radiation is wave length range 280 nm to an emission element that comprises an assembly of oligo atomic metal clusters confined in molecular sieve for converting invisible radiation emitted by a radiation source at room temperature or an higher temperature to visible light and further a transparent envelope said illumination system.
Abstract:
An inorganic electroluminescent device is provided, the inorganic electroluminescent device including: a multilayer structure containing at least one pair of electrodes, and a light-emitting layer provided between the electrodes, the light-emitting layer contains at least one matrix material, at least one element forming a luminescent center, and Cu, wherein the matrix material is selected from the group consisting of II Group-XVI Group compounds, XII Group-XVI Group compounds, and mixed crystals thereof, and the light-emitting layer constitutes an inorganic phosphor layer having a composition gradient that Cu concentration in the host material varies by a factor of at least 10 in a thickness direction of the light-emitting layer.