摘要:
Apparatuses, methods, and systems are disclosed for contention window size adjustment. One apparatus includes a transmitter that transmits data on a carrier to a set of devices in a first transmission burst having a duration of at least one subframe. In some embodiments, the set of devices includes one or more devices. In various embodiments, the apparatus includes a receiver that receives feedback information from each device. In certain embodiments, the apparatus includes a processor that determines, based on the feedback information, whether interference above a predetermined level exists on the carrier during the first transmission burst at each device, adjusts a contention window size based on the determination of whether interference above the predetermined level exists on the carrier during the first transmission burst at each device, and determines a value N between a predetermined minimum contention window size and the adjusted contention window size.
摘要:
A method in a node is disclosed. The method comprises determining (1304) a first route from a first source node (505 A) to a destination (510), the first route comprising one or more relay nodes (515, 615). The method comprises determining (1308) an energy-harvesting routing metric, the energy-harvesting routing metric for use in determining a second route from a second source node (505B) to the destination (510). The method comprises determining (1312) the second route from the second source node (505B) to the destination (510), the determined second route comprising one or more relay nodes (515, 615) selected to maximize the determined energy-harvesting routing metric.
摘要:
Embodiments of the present invention relate to the field of communications technologies, and provide a method and an apparatus for reducing interference between WiFi and LTE, so as to adjust a WiFi operating channel of a terminal according to an operating status of LTE, so that when WiFi and LTE coexist, the interference is minimized, and user experience is improved. The method includes: determining whether an LTE network is operating; obtaining an operating status of the LTE network if the LTE network is operating, where the operating status of the LTE network includes an operating frequency of the LTE network; and determining a WiFi operating channel according to the operating status of the LTE network and a preset rule, where the preset rule includes a correspondence between the operating status of the LTE network and a channel interference parameter between the LTE network and a WiFi channel.
摘要:
Methods and devices are shown for improving an existing route between a first node and a second node in a first ad-hoc network that includes a plurality of nodes, the method and devices selecting based on a predetermined performance criterion or criteria one of a plurality of candidate routes between the first node and the second node, wherein each candidate route includes at least one inter-node link that is not included within the first ad-hoc network and at least one candidate route including multiple inter-node links; initializing, via the existing route, the use of the inter-node links of the selected candidate route; and switching from using the existing route to using the candidate route.
摘要:
Described herein are processes related to discovering and establishing suitable multi-hop communication paths for (endpoint) user equipments (UEs). A network-initiated discovery and path selection processes may utilize periodically transmitted reference signals along with optional assistance information. A network node, such an eNodeB, and other relaying-capable nodes, such as relay UEs, may transmit periodic reference signals. Based on these transmitted reference signals and optional assistance information, the relay UEs and/or an endpoint node (e.g., the eNodeB or the endpoint UE) may make a selection decision for previous hop paths for communication. The endpoint UE or the eNodeB may make the selection decision for the end-to-end path in order to provide coverage extension for the end UE using multi-hop transmission paths.