摘要:
A method for managing storage functions in a data replication environment is disclosed. In one embodiment, such a method includes continually monitoring for changes to a storage configuration at a secondary site. Upon detecting changes to the storage configuration at the secondary site, the method transmits remote metadata describing the changes to the primary site and stores the remote metadata at the primary site. The method then initiates a storage management function at the primary site which is mirrored to the secondary site. In order to perform the storage management function, the method reads the remote metadata at the primary site to determine the storage configuration at the secondary site. The method then performs the storage management function at the primary site in a way that takes into account the storage configuration at the secondary site. A corresponding apparatus, system, and computer-readable medium are also disclosed and claimed herein.
摘要:
Embodiments of the disclosure relate to archiving data in a storage system. An exemplary embodiment comprises making a flash copy of data in a source volume, compressing data in the flash copy wherein each track of data is compressed into a set of data pages, and storing the compressed data pages in a target volume. Data extents for the target volume may be allocated from a pool of compressed data extents. After each stride worth of data is compressed and stored in the target volume, data may be destaged to avoid destage penalties. Data from the target volume may be decompressed from a flash copy of the target volume in a reverse process to restore each data track, when the archived data is needed. Data may be compressed and uncompressed using a Lempel-Ziv-Welch process.
摘要:
A method, system and computer program product for preserving data in a storage subsystem having dual cache and dual nonvolatile storage (NVS) through a failover from a failed cluster to a surviving cluster, the surviving cluster undergoing a rebooting process, is provided. A memory preserved indicator associated with a cache of the surviving cluster is detected. The memory preserved indicator designates marked tracks having an image in an NVS of the failed cluster to be preserved through the rebooting process. A counter in a data structure of the surviving cache is incremented. If a value of the counter exceeds a predetermined value, a cache memory is initialized, and the marked tracks are removed from the cache to prevent an instance of repetitive reboots caused by a corrupted structure in the cache memory.
摘要:
A method, system and computer program product for preserving data in a storage subsystem having dual cache and dual nonvolatile storage (NVS) through a failover from a failed cluster to a surviving cluster, the surviving cluster undergoing a rebooting process, is provided. A memory preserved indicator associated with a cache of the surviving cluster is detected. The memory preserved indicator designates marked tracks having an image in an NVS of the failed cluster to be preserved through the rebooting process. A counter in a data structure of the surviving cache is incremented. If a value of the counter exceeds a predetermined value, a cache memory is initialized, and the marked tracks are removed from the cache to prevent an instance of repetitive reboots caused by a corrupted structure in the cache memory.
摘要:
A method, system, and computer program product for preserving data in a storage subsystem having dual cache and dual nonvolatile storage (NVS) through a failover from a failed cluster to a surviving cluster is provided. A memory preserved indicator is initiated to mark tracks on a cache of the surviving cluster to be preserved, the tracks having an image in an NVS of the failed cluster. A destage operation is performed to destage the marked tracks. Subsequent to a determination that each of the marked tracks have been destaged, the memory preserved indicator is disabled to remove the mark from the tracks. If the surviving cluster reboots previous to each of the marked tracks having been destaged, the cache is verified as a memory preserved cache, the marked tracks are retained for processing while all unmarked tracks are removed, and the marked tracks are processed.
摘要:
Provided are a method, system, and article of manufacture for copying data from a first cluster to a second cluster to reassign storage areas from the first cluster to the second cluster. An operation is initiated to reassign storage areas from a first cluster to a second cluster, wherein the first cluster includes a first cache and a first storage unit and the second cluster includes a second cache and a second storage unit. Data in the first cache for the storage areas to reassign to the second cluster is copied to the second cache. Data in the first storage unit for storage areas remaining assigned to the first cluster is copied to the second storage unit.
摘要:
Embodiments of the disclosure relate to archiving data in a storage system. An exemplary embodiment comprises making a flash copy of data in a source volume, compressing data in the flash copy wherein each track of data is compressed into a set of data pages, and storing the compressed data pages in a target volume. Data extents for the target volume may be allocated from a pool of compressed data extents. After each stride worth of data is compressed and stored in the target volume, data may be destaged to avoid destage penalties. Data from the target volume may be decompressed from a flash copy of the target volume in a reverse process to restore each data track, when the archived data is needed. Data may be compressed and uncompressed using a Lempel-Ziv-Welch process.
摘要:
In a data storage subsystem with disk storage and a pair of clusters, one set of DASD fast write data is in cache of one cluster and in non-volatile data storage of the other. In response to a failover of one of the pair of clusters to a local cluster, the local cluster converts the DASD fast write data in local cache to converted fast write data to prioritize the converted data for destaging to disk storage. In response to failure to destage, the local cluster allocates local non-volatile storage tracks and emulates a host adapter to store the converted fast write data by the local non-volatile storage, reconverting the converted fast write data of the non-volatile storage to local DASD fast write data stored in the local non-volatile storage and stored in the local cache storage.
摘要:
A method for managing storage functions in a data replication environment is disclosed. In one embodiment, such a method includes continually monitoring for changes to a storage configuration at a secondary site. Upon detecting changes to the storage configuration at the secondary site, the method transmits remote metadata describing the changes to the primary site and stores the remote metadata at the primary site. The method then initiates a storage management function at the primary site which is mirrored to the secondary site. In order to perform the storage management function, the method reads the remote metadata at the primary site to determine the storage configuration at the secondary site. The method then performs the storage management function at the primary site in a way that takes into account the storage configuration at the secondary site.
摘要:
A method, system, and computer program product for preserving data in a storage subsystem having dual cache and dual nonvolatile storage (NVS) through a failover from a failed cluster to a surviving cluster is provided. A memory preserved indicator is initiated to mark tracks on a cache of the surviving cluster to be preserved, the tracks having an image in an NVS of the failed cluster. A destage operation is performed to destage the marked tracks. Subsequent to a determination that each of the marked tracks have been destaged, the memory preserved indicator is disabled to remove the mark from the tracks. If the surviving cluster reboots previous to each of the marked tracks having been destaged, the cache is verified as a memory preserved cache, the marked tracks are retained for processing while all unmarked tracks are removed, and the marked tracks are processed.