-
公开(公告)号:US08416951B2
公开(公告)日:2013-04-09
申请号:US12296687
申请日:2007-04-02
申请人: Olivier Billet , Henri Gilbert , Côme Berbain
发明人: Olivier Billet , Henri Gilbert , Côme Berbain
IPC分类号: H04L9/00
CPC分类号: G06F7/584 , G06F2207/582
摘要: The invention relates to a method of generating a pseudorandom string of terms belonging to a finite body K of cardinal q≧2 intended to be used in a cryptography procedure, said method comprising the iterative calculation of a system (Γ) of m polynomials with n variables belonging to the finite body K. According to the invention, the coefficients of these m polynomials are regenerated at each iteration. The invention also relates to pseudorandom string generator intended to implement this method.
摘要翻译: 本发明涉及一种产生属于要在密码学过程中使用的基数为q≥2的有限体K的术语的伪随机串的方法,所述方法包括对m个多项式的系统(&Ggr)的迭代计算, n个变量属于有限体K.根据本发明,这些m个多项式的系数在每个迭代中被再生。 本发明还涉及旨在实现该方法的伪随机串生成器。
-
2.
公开(公告)号:US20090279693A1
公开(公告)日:2009-11-12
申请号:US12296687
申请日:2007-04-02
申请人: Olivier Billet , Henri Gilbert , Côme Berbain
发明人: Olivier Billet , Henri Gilbert , Côme Berbain
IPC分类号: H04L9/28
CPC分类号: G06F7/584 , G06F2207/582
摘要: The invention relates to a method of generating a pseudorandom string of terms belonging to a finite body K of cardinal q≧2 intended to be used in a cryptography procedure, said method comprising the iterative calculation of a system (Γ) of m polynomials with n variables belonging to the finite body K. According to the invention, the coefficients of these m polynomials are regenerated at each iteration. The invention also relates to pseudorandom string generator intended to implement this method.
摘要翻译: 本发明涉及一种产生属于要在密码过程中使用的基数q> = 2的有限体K的术语的伪随机串的方法,所述方法包括对m个多项式的系统(Gamma)的迭代计算,其中, n个变量属于有限体K.根据本发明,这些m个多项式的系数在每个迭代中被再生。 本发明还涉及旨在实现该方法的伪随机串生成器。
-
公开(公告)号:US08601041B2
公开(公告)日:2013-12-03
申请号:US11922382
申请日:2006-06-13
申请人: Henri Gilbert , Jacques Patarin , Côme Berbain
发明人: Henri Gilbert , Jacques Patarin , Côme Berbain
IPC分类号: G06F7/58
CPC分类号: G06F7/582
摘要: A method of generating a pseudorandom sequence of terms belonging to a finite body K of cardinal q≧2 intended to be used in a cryptographic procedure, said method comprising the iterative calculation, from an initialization n-tuple X(0)=(X(0)1, X(0)2, . . . , X(0)n), where n≧2, of elements of K, of n-tuples X(i)=(X(i)1, X(i)2, . . . , X(i)n) of elements of K (where i=1, 2, . . . ), each n-tuple X(i) being obtained on iteration number i in a predetermined manner at least from certain components Y(i)k of an m-tuple Y(i)=(Y(i)1, Y(i)2, . . . , Y(i)m), where m≧n, of elements of K and the terms of said pseudorandom sequence being extracted in a predetermined manner from the n-tuples X and/or the m-tuples Y. For at least one value of i, among said components Y(i)k of the m-tuple Y(i) that are used to obtain the multiplet X(i), at least E(n/2) of them are each represented by a predetermined second degree polynomial function, with coefficients in K, of the components of the n-tuple X(i−1).
摘要翻译: 一种生成属于要在密码过程中使用的基数q> = 2的有限体K的术语的伪随机序列的方法,所述方法包括迭代计算,从初始化n元组X(0)=(X (i)=(X(i)1,X(i)1,X(i),X(0)2,...,X (i)2,...,X(i)n)(其中i = 1,2,...),每个n元组X(i)以预定方式在迭代数i上获得 至少从m元组Y(i)=(Y(i)1,Y(i)2,...,Y(i)m)的某些分量Y(i) 并且以预定的方式从n元组X和/或m元组Y提取所述伪随机序列的项。对于i的至少一个值,在i的所述分量Y(i)k中, 用于获得多项目X(i)的m元组Y(i),其至少E(n / 2)分别由预定的二次多项式函数表示,其中K的分数为 n元组X(i-1)。
-
公开(公告)号:US20100199090A1
公开(公告)日:2010-08-05
申请号:US12680188
申请日:2008-09-24
申请人: Côme Berbain , Olivier Billet , Henri Gilbert
发明人: Côme Berbain , Olivier Billet , Henri Gilbert
CPC分类号: H04L9/3271 , H04L9/0662 , H04L2209/805
摘要: The invention relates to a secure communication between an electronic label (A) and a reader (B), in particular for the authentication of the label by the reader, in which: the reader (31) transmits at least one datum (Ch) to the label, the label calculates a combination comprising at least the datum from the reader (Ch)) and a secret (Si) specific to the label, and the label communicates (32) the result (C(Si, Ch)) of the combination to the reader (B) for verification purposes. The aforementioned combination (C(Si, Ch)) is preferably calculated using a current secret value (Si) delivered by a pseudo-random number generator (33). The reader (B) is also provided with a homologous pseudo-random generator.
摘要翻译: 本发明涉及电子标签(A)和读取器(B)之间的安全通信,特别是用于读取器对标签的认证,其中:读取器(31)将至少一个数据(Ch)发送到 该标签计算至少包含来自读取器(Ch)的数据的组合)和该标签特有的秘密(Si),并且该标签将结果(C(Si,Ch))通信(32) 组合到读者(B)进行验证。 上述组合(C(Si,Ch))优选使用由伪随机数发生器(33)传送的当前秘密值(Si)来计算。 阅读器(B)还具有同源伪随机发生器。
-
公开(公告)号:US08458469B2
公开(公告)日:2013-06-04
申请号:US12680188
申请日:2008-09-24
申请人: Côme Berbain , Olivier Billet , Henri Gilbert
发明人: Côme Berbain , Olivier Billet , Henri Gilbert
IPC分类号: H04L9/32
CPC分类号: H04L9/3271 , H04L9/0662 , H04L2209/805
摘要: The invention relates to a secure communication between an electronic label (A) and a reader (B), in particular for the authentication of the label by the reader, in which: the reader (31) transmits at least one datum (Ch) to the label, the label calculates a combination comprising at least the datum from the reader (Ch)) and a secret (Si) specific to the label, and the label communicates (32) the result (C(Si, Ch)) of the combination to the reader (B) for verification purposes. The aforementioned combination (C(Si, Ch)) is preferably calculated using a current secret value (Si) delivered by a pseudo-random number generator (33). The reader (B) is also provided with a homologous pseudo-random generator.
摘要翻译: 本发明涉及电子标签(A)和读取器(B)之间的安全通信,特别是用于读取器对标签的认证,其中:读取器(31)将至少一个数据(Ch)发送到 该标签计算至少包含来自读取器(Ch)的数据的组合)和该标签特有的秘密(Si),并且该标签将结果(C(Si,Ch))通信(32) 组合到读者(B)进行验证。 上述组合(C(Si,Ch))优选使用由伪随机数发生器(33)传送的当前秘密值(Si)来计算。 阅读器(B)还具有同源伪随机发生器。
-
公开(公告)号:US20090319590A1
公开(公告)日:2009-12-24
申请号:US11922382
申请日:2006-06-13
申请人: Henri Gilbert , Jacques Patarin , Côme Berbain
发明人: Henri Gilbert , Jacques Patarin , Côme Berbain
IPC分类号: G06F7/58
CPC分类号: G06F7/582
摘要: A method of generating a pseudorandom sequence of terms belonging to a finite body K of cardinal q≧2 intended to be used in a cryptographic procedure, said method comprising the iterative calculation, from an initialization n-tuple X(0)=(X(0)1, X(0)2, . . . , X(0)n), where n≧2, of elements of K, of n-tuples X(i)=(X(i)1, X(i)2, . . . , X(i)n) of elements of K (where i=1, 2, . . . ), each n-tuple X(i) being obtained on iteration number i in a predetermined manner at least from certain components Y(i)k of an m-tuple Y(i)=(Y(i)1, Y(i)2, . . . , Y(i)m), where m≧n, of elements of K and the terms of said pseudorandom sequence being extracted in a predetermined manner from the n-tuples X and/or the m-tuples Y. For at least one value of i, among said components Y(i)k of the m-tuple Y(i) that are used to obtain the multiplet X(i), at least E(n/2) of them are each represented by a predetermined second degree polynomial function, with coefficients in K, of the components of the n-tuple X(i−1).
摘要翻译: 一种生成属于要在密码过程中使用的基数q> = 2的有限体K的术语的伪随机序列的方法,所述方法包括迭代计算,从初始化n元组X(0)=(X (i)=(X(i)1,X(i)1,X(i),X(0)2,...,X (i)2,...,X(i)n)(其中i = 1,2,...),每个n元组X(i)以预定方式在迭代数i上获得 至少从m元组Y(i)=(Y(i)1,Y(i)2,...,Y(i)m)的某些分量Y(i) 并且以预定的方式从n元组X和/或m元组Y中提取所述伪随机序列的项。对于i的至少一个值,在i的所述分量Y(i)k中, 用于获得多项目X(i)的m元组Y(i),其至少E(n / 2)分别由预定的二次多项式函数表示,其中K的分数为 n元组X(i-1)。
-
-
-
-
-