摘要:
A method, system, and computer-readable storage medium are disclosed for upscaling an image sequence. An upsampled frame is generated based on an original frame in an original image sequence comprising a plurality of frames. A smoothed image sequence is generated based on the original image sequence. A plurality of patches are determined in the upsampled frame. Each patch comprises a subset of image data in the upsampled frame. Locations of a plurality of corresponding patches are determined in a neighboring set of the plurality of frames in the smoothed image sequence. A plurality of high-frequency patches are generated. Each high-frequency patch is based on image data at the locations of the corresponding patches in the original image sequence. The plurality of high-frequency patches are added to the upsampled frame to generate a high-quality upscaled frame.
摘要:
Methods and systems for image upscaling are disclosed. In one embodiment, a low frequency band image intermediate is obtained from an input image. The input image is upsampled by a scale factor to obtain an upsampled image intermediate. A result image is estimated based at least in part on the upsampled image intermediate, the low frequency band image intermediate, and the input image, wherein the input image is of a smaller scale than the result image.
摘要:
Methods and systems for a regression-based learning model in image upscaling are disclosed. In one embodiment, a set of image patch pairs for each of a set of images is generated. Each of the image patch pairs contains a natural image and a corresponding downscaled lower-resolution image. A regression model based at least in part on the set of image patch pairs is defined. The regression model represents a gradient of a function of the downscaled lower-resolution image. An image is upscaled based at least in part on the regression model.
摘要:
Methods, systems, and apparatus, including computer program products, feature receiving user input defining a sample of pixels from an image, the image being defined by a raster of pixels. While receiving the user input, the following actions are performed one or more times: pixels are coherently classified in the raster of pixels as being foreground or background based on the sample of pixels; and a rendering of the image is updated on a display to depict classified foreground pixels and background pixels as the sample is being defined.
摘要:
A blur classification module may compute the probability that a given pixel in a digital image was blurred using a given two-dimensional blur kernel, and may store the computed probability in a blur classification probability matrix that stores probability values for all combinations of image pixels and the blur kernels in a set of likely blur kernels. Computing these probabilities may include computing a frequency power spectrum for windows into the digital image and/or for the likely blur kernels. The blur classification module may generate a coherent mapping between pixels of the digital image and respective blur states, or may perform a segmentation of the image into blurry and sharp regions, dependent on values stored in the matrix. Input image data may be pre-processed. Blur classification results may be employed in image editing operations to automatically target image subjects or background regions, or to estimate the depth of image elements.
摘要:
Embodiments of methods and systems for stereo-aware image editing are described. A three-dimensional model of a stereo scene is built from one or more input images. Camera parameters for the input images are computed. The three-dimensional model is modified. In some embodiments, the modifying the three-dimensional model includes modifying one or more of the images and applying results of the modifying one or more of the images to corresponding model vertices. The scene is re-rendered from the camera parameters to produce an edited stereo pair that is consistent with the three-dimensional model.
摘要:
An image editing application (or a blur classification module thereof) may automatically estimate a coherent defocus blur map from a single input image. The application may represent the blur spectrum as a differentiable function of radius r, and the optimal radius may be estimated by optimizing the likelihood function through a gradient descent algorithm. The application may generate the spectrum function over r through polynomial-based fitting. After fitting, the application may generate look-up tables to store values for the spectrum and for its first and second order derivatives, respectively. The use of these tables in the likelihood optimization process may significantly reduce the computational costs of a given blur estimation exercise. The application may minimize an energy function that includes a data term, a smoothness term, and a smoothness parameter that is adaptive to local image content. The output blur map may be used for image object depth estimation.
摘要:
Methods and systems for a regression-based learning model in image upscaling are disclosed. In one embodiment, a set of image patch pairs for each of a set of images is generated. Each of the image patch pairs contains a natural image and a corresponding downscaled lower-resolution image. A regression model based at least in part on the set of image patch pairs is defined. The regression model represents a gradient of a function of the downscaled lower-resolution image. An image is upscaled based at least in part on the regression model.
摘要:
Methods and systems for denoising and artifact removal in image upscaling are disclosed. In one embodiment, a low frequency band image intermediate is obtained from an input image. An upsampled image intermediate is obtained from the input image by upsampling. A result image is estimated, based at least in part on the upsampled image intermediate, the low frequency band image intermediate, and the input image. The input image is of a smaller scale than the result image. The estimating the result image further includes eliminating from the result image noise that is present in the input image.
摘要:
Methods, systems, and apparatus, including computer program products, feature receiving user input defining a sample of pixels from an image, the image being defined by a raster of pixels. While receiving the user input, the following actions are performed one or more times: pixels are coherently classified in the raster of pixels as being foreground or background based on the sample of pixels; and a rendering of the image is updated on a display to depict classified foreground pixels and background pixels as the sample is being defined.