摘要:
A computer-aided software development system includes programs to implement edit, compile, link and run sequences, all from memory, at very high speed. The complier and linker operate on an incremental basis, line-by-line or increment-by-increment, so if only one line is changed in an edit session, then only that line and lines related to it need be recompiled if no other code is affected; linking is also done in a manner to save and re-use parts of link tables and link lists which are not changed from one edit session to another. Scanning is also done incrementally, and the resulting token lists and token tables, and lexical increment tables, are saved in memory to be used again where no changes are made. All of the linking tables are saved in memory so there is no need to generate link tables for increments of code where no changes in links are needed. The compiler is able to skip lines or blocks of lines of source code which haven't been changed. All of the source code text modules, the token lists, symbol tables, code tables, link lists and related data, etc., saved from one compile to another are maintained in virtual memory rather than in files so that speed of operation is enhanced. Also, the object code created is maintained in memory rather than in a file, and executed from this memory image, to reduce delays. A virtual memory management arrangement for the system assures that all of the needed data modules and code is present in real memory in the phase being implemented, with a minimum of page faults and page swapping during the phase, again to enhance operating speed.
摘要:
A computer-aided software development system includes programs to implement edit, compile, link and run sequences, all from memory, at very high speed. The compiler operates on an incremental basis, line-by-line, so if only one line is changed in an edit session, then only that line need be recompiled if no other code is affected. Dependency analysis is performed incrementally, without requiring the user to enter dependencies. Scanning is also done incrementally, and the resulting token list saved in memory to be used again where no changes are made. All of the linking tables are saved in memory so there is no need to generate link tables for increments of code where no changes in links are needed. The parser is able to skip lines or blocks of lines of source code which haven't been changed. All of the source code text modules, the token lists, symbol tables, code tables and related data saved from one compile to another are maintained in virtual memory rather than in files so that speed of operation is enhanced. Also, the object code created is maintained in memory rather than in a file, and executed from this memory image, to reduce delays. A virtual memory management arrangement for the system assures that all of the needed data modules and code is present in real memory by page swapping, but with a minimum of page faults, again to enhance operating speed.
摘要:
A computer-aided software development system includes programs to implement edit, compile, link and run sequences, all from memory, at very high speed. The compiler operates on an incremental basis, line-byline, so if only one line is changed in an edit session, then only that line need be recompiled if no other code is affected. Dependency analysis is performed incrementally, without requiring the user to enter dependencies. Scanning is also done incrementally, and the resulting token list saved in memory to be used again where no changes are made. All of the linking tables are saved in memory so there is no need to generate link tables for increments of code where no changes in links are needed. The parser is able to skip lines or blocks of lines of source code which haven't been changed. All of the source code text modules, the token lists, symbol tables, code tables and related data saved from one compile to another are maintained in virtual memory rather than in files so that speed of operation is enhanced. Also, the object code created is maintained in memory rather than in a file, and executed from this memory image, to reduce delays. A virtual memory management arrangement for the system assures that all of the needed data modules and code is present in real memory by paging swapping, but with a minimum of page faults, again to enhance operating speed.
摘要:
A computer-aided software development system includes programs to implement edit, compile, link and run sequences, all from virtual memory, at very high speed. The compiler operates on an incremental basis, line-by-line, so if only one line is changed in an edit session, then only that line need be recompiled if no other code is affected. Scanning is done incrementally, and the resulting token list saved in memory to be used again where no changes are made. All of the linking tables are saved in virtual memory so that there is no need to generate link tables for increments of code where no changes in links are needed. The parser is able to skip lines or blocks of lines of source code which haven't been changed. All of the source code text modules, the token lists, symbol tables, code tables and related data saved from one compile to another are maintained in virtual memory rather than in files so that speed of operation is enhanced; each module or table is on a separate page with no data from other modules or tables interleaved, and whenever data is added to one of these a reallocation is done to make sure each page has no foreign data. Also, the object code created is maintained in memory rather than in a file, and executed from this memory image, to reduce delays. A virtual memory management arrangement for the system assures that all of the needed data modules and code is present in real memory by page swapping, but with a minimum of page faults, again to enhance operating speed.
摘要:
A computer-aided software development system includes programs to implement edit, compile, link and run sequences, all from memory, at very high speed. The compiler operates on an incremental basis, line-by-line, so if only one line is changed in an edit session, then only that line need be recompiled if no other code is affected. Scanning is done incrementally, and the resulting token list saved in memory to be used again where no changes are made. All of the linking tables are saved in memory so there is no need to generate link tables for increments of code where no changes in links are needed. The parser is able to skip lines or blocks of lines of source code which haven't been changed; for this purpose, each line of source text in the editor has a change-tag to indicate whether this line has been changed, and from this change-tag information a descriptor table is built having a clean-lines indication for each line of source code, indicating how many clean lines follow the present line. All of the source code text modules, the token lists, symbol tables, code tables and related data saved from one compile to another are maintained in virtual memory rather than in files so that speed of operation is enhanced. Also, the object code created is maintained in memory rather than in a file, and executed from this memory image, to reduce delays. A virtual memory management arrangement for the system assures that all of the needed data modules and code is present in real memory by page swapping, but with a minimum of page faults, again to enhance operating speed.
摘要:
A computer-aided software development system includes programs to implement edit, compile, link and run sequences, all from memory, at very high speed. The compiler operates on an incremental basis, line-by-line, so if only one line is changed in an edit session, then only that line need be recompiled if no other code is affected. Scanning is done incrementally, and the resulting token list saved in memory to be used again where no changes are made. All of the linking tables are saved in memory so there is no need to generate link tables for increments of code where no changes in links are needed. The parser is able to skip lines or blocks of lines of source code which haven't been changed; for this purpose, each line of source text in the editor has a change-tag to indicate whether this line has been changed, and from this change-tag information a clean-lines table is built having a clean-lines indication for each line of source code, indicating how many clean lines follow the present line. All of the source code text modules, the token lists, symbol tables, code tables and related data saved from one compile to another are maintained in virtual memory rather than in files so that speed of operation is enhanced. Also, the object code created is maintained in memory rather than in a file, and executed from this memory image, to reduce delays. A virtual memory management arrangement for the system assures that all of the needed data modules and code is present in real memory by page swapping, but with a minimum of page faults, again to enhance operating speed.
摘要:
A computer-aided software development system includes programs to implement edit, compile, link and run sequences, all from memory, at very high speed. The compiler operates on an incremental basis, line-by-line, so if only one line is changed in an edit session, then only that line need be recompiled if no other code is affected. Scanning is done incrementally, generating a sequential token list which is saved in memory to be used again where no changes are made; increments of the sequential token list are reused when no changes have been made in the increments and related statements. All of the linking tables are also saved in memory so there is no need to generate link tables for increments of code where no changes in links are needed. The parser is able to skip lines or blocks of lines of source code which haven't been changed. All of the source code text modules, the sequential token lists, symbol tables, code tables and related data saved from one compile to another are maintained in virtual memory rather than in files so that speed of operation is enhanced. Also, the object code created is maintained in memory rather than in a file, and executed from this memory image, to reduce delays. A virtual memory management arrangement for the system assures that all of the needed data modules and code is present in real memory by page swapping, but with a minimum of page faults, again to enhance operating speed.