HYBRID PRE-TRAINING OF DEEP BELIEF NETWORKS
    1.
    发明申请
    HYBRID PRE-TRAINING OF DEEP BELIEF NETWORKS 有权
    深层比较网络的混合预训练

    公开(公告)号:US20140164299A1

    公开(公告)日:2014-06-12

    申请号:US13707088

    申请日:2012-12-06

    IPC分类号: G06N3/08

    CPC分类号: G06N3/08

    摘要: Pretraining for a DBN initializes weights of the DBN (Deep Belief Network) using a hybrid pre-training methodology. Hybrid pre-training employs generative component that allows the hybrid PT method to have better performance in WER (Word Error Rate) compared to the discriminative PT method. Hybrid pre-training learns weights which are more closely linked to the final objective function, allowing for a much larger batch size compared to generative PT, which allows for improvements in speed; and a larger batch size allows for parallelization of the gradient computation, speeding up training further.

    摘要翻译: 预先训练DBN使用混合预训练方法初始化DBN(深信仰网络)的权重。 混合预训练采用生成部件,与辨别性PT方法相比,允许混合PT方法在WER(字错误率)方面具有更好的性能。 混合预训练学习与最终目标函数更紧密相关的权重,允许与生成PT相比更大的批量大小,这允许提高速度; 并且较大的批量允许梯度计算的并行化,进一步加速训练。