Abstract:
Methods of making catalyst electrodes comprising sputtering at least Pt and Ir onto nanostructured whiskers to provide multiple alternating layers comprising, respectively in any order, at least Pt and Ir. In some exemplary embodiments, catalyst electrodes described, or made as described, herein are anode catalyst, and in other exemplary embodiments cathode catalyst. Catalysts electrodes are useful, for example, in generating H2 and O2 from water.
Abstract:
Methods of making catalyst electrodes comprising sputtering at least Pt and Ir onto nanostructured whiskers to provide multiple alternating layers comprising, respectively in any order, at least Pt and Ir. In some exemplary embodiments, catalyst electrodes described, or made as described, herein are anode catalyst, and in other exemplary embodiments cathode catalyst. Catalysts electrodes are useful, for example, in generating H2 and O2 from water.
Abstract:
Methods of making catalyst electrodes comprising sputtering at least Pt and Ir onto nanostructured whiskers to provide multiple alternating layers comprising, respectively in any order, at least Pt and Ir. In some exemplary embodiments, catalyst electrodes described, or made as described, herein are anode catalyst, and in other exemplary embodiments cathode catalyst. Catalysts electrodes are useful, for example, in generating H2 and O2 from water.
Abstract:
In one aspect, the present disclosure describes a first article comprising nanostructured whiskers having a first layer thereon comprising an organometallic compound comprising at least one of Ru or Ir. Optionally, the first layer further comprises an complex comprising at least one of Ru or Ir. Typically, the article includes at least one or more additional layers (e.g., a second layer comprising at least one of metallic Ir, Ir oxide, or Ir hydrated oxide on the first layer). Articles described herein are useful, for example, in fuel cell catalysts (i.e., an anode or cathode catalyst).