Abstract:
A user interface enables a user to calibrate the position of a three dimensional model with a real-world environment represented by that model. Using a device's sensor, the device's location and orientation is determined. A video image of the device's environment is displayed on the device's display. The device overlays a representation of an object from a virtual reality model on the video image. The position of the overlaid representation is determined based on the device's location and orientation. In response to user input, the device adjusts a position of the overlaid representation relative to the video image.
Abstract:
A user interface enables a user to calibrate the position of a three dimensional model with a real-world environment represented by that model. Using a device's sensor, the device's location and orientation is determined. A video image of the device's environment is displayed on the device's display. The device overlays a representation of an object from a virtual reality model on the video image. The position of the overlaid representation is determined based on the device's location and orientation. In response to user input, the device adjusts a position of the overlaid representation relative to the video image.
Abstract:
A user interface enables a user to calibrate the position of a three dimensional model with a real-world environment represented by that model. Using a device's sensor, the device's location and orientation is determined. A video image of the device's environment is displayed on the device's display. The device overlays a representation of an object from a virtual reality model on the video image. The position of the overlaid representation is determined based on the device's location and orientation. In response to user input, the device adjusts a position of the overlaid representation relative to the video image.
Abstract:
A user interface enables a user to calibrate the position of a three dimensional model with a real-world environment represented by that model. Using a device's sensor, the device's location and orientation is determined. A video image of the device's environment is displayed on the device's display. The device overlays a representation of an object from a virtual reality model on the video image. The position of the overlaid representation is determined based on the device's location and orientation. In response to user input, the device adjusts a position of the overlaid representation relative to the video image.
Abstract:
A user interface enables a user to calibrate the position of a three dimensional model with a real-world environment represented by that model. Using a device's sensor, the device's location and orientation is determined. A video image of the device's environment is displayed on the device's display. The device overlays a representation of an object from a virtual reality model on the video image. The position of the overlaid representation is determined based on the device's location and orientation. In response to user input, the device adjusts a position of the overlaid representation relative to the video image.
Abstract:
A user interface enables a user to calibrate the position of a three dimensional model with a real-world environment represented by that model. Using a device's sensor suite, the device's location and orientation is determined. A video image of the device's environment is displayed on the device's display. The device overlays a representation of an object from a virtual reality model on the video image. The position of the overlaid representation is determined based on the device's location and orientation. In response to user input, the device adjusts a position of the overlaid representation relative to the video image.
Abstract:
A user interface enables a user to calibrate the position of a three dimensional model with a real-world environment represented by that model. Using a device's sensor, the device's location and orientation is determined. A video image of the device's environment is displayed on the device's display. The device overlays a representation of an object from a virtual reality model on the video image. The position of the overlaid representation is determined based on the device's location and orientation. In response to user input, the device adjusts a position of the overlaid representation relative to the video image.
Abstract:
A user interface enables a user to calibrate the position of a three dimensional model with a real-world environment represented by that model. Using a device's sensor, the device's location and orientation is determined. A video image of the device's environment is displayed on the device's display. The device overlays a representation of an object from a virtual reality model on the video image. The position of the overlaid representation is determined based on the device's location and orientation. In response to user input, the device adjusts a position of the overlaid representation relative to the video image.
Abstract:
A user interface enables a user to calibrate the position of a three dimensional model with a real-world environment represented by that model. Using a device's sensor, the device's location and orientation is determined. A video image of the device's environment is displayed on the device's display. The device overlays a representation of an object from a virtual reality model on the video image. The position of the overlaid representation is determined based on the device's location and orientation. In response to user input, the device adjusts a position of the overlaid representation relative to the video image.
Abstract:
A user interface enables a user to calibrate the position of a three dimensional model with a real-world environment represented by that model. Using a device's sensor suite, the device's location and orientation is determined. A video image of the device's environment is displayed on the device's display. The device overlays a representation of an object from a virtual reality model on the video image. The position of the overlaid representation is determined based on the device's location and orientation. In response to user input, the device adjusts a position of the overlaid representation relative to the video image.