Abstract:
In some aspects, the disclosure is directed to methods and systems for intelligent transmit power management. Output power levels may be dynamically determined responsive to REM measurements, user equipment (UE) signal reports, information received from other cells (e.g. via X2 application protocol (X2AP) or other such communication protocols), or any combination of these or other information in an iterative level conditioning and limit checking process.
Abstract:
In some aspects, the disclosure is directed to methods and systems for dense small cell deployment. In one or more embodiments, a plurality of small cells is grouped into a first group of small cells having a first power level and a second group of small cells having a second power level. In one or more embodiments, each power level in the first set of power levels is greater than each power level in the second set of power levels. In one or more embodiments, the small cells of the first group performs frequency domain inter-cell interference coordination (ICIC) between the small cells of the first group. In one or more embodiments, the small cells of the second group performs time domain ICIC with the small cells in the first group. In one or more embodiments, the small cells of the first group use a same almost blank subframe (ABS) pattern.
Abstract:
Embodiments provide systems and methods for selecting almost-blank sub-frames (ABSs) in wireless networks. ABSs may be utilized as part of enhanced inter-cell interference cancellation (eICIC). In an embodiment, an ABS pattern is selected in a distributed fashion without use of a direct interface between neighboring base stations. Embodiments operate with a hybrid self-organizing network (SON) that includes a centralized self-organizing network (cSON) unit and a distributed self-organizing network (dSON) unit. The cSON may provide the dSON with information about a plurality of ABS patterns, and the dSON may utilize the information received from the cSON to select an ABS pattern from the plurality of ABS patterns. In some embodiments, a base station may select neighboring base stations to perform eICIC based on a reference signal received power (RSRP).
Abstract:
Methods relating to managing operations of small cells are provided. One method includes receiving, from a management system configured to manage one or more operations of a plurality of small cells, a plurality of fractional frequency reuse (FFR) patterns for a frequency range. Each FFR pattern is configured to define a plurality of cell groupings, each including one or more of the plurality small cells. Each of the plurality of cell groupings is configured to transmit downlink transmissions over a different one of a plurality of frequency bands within the frequency range. The method further includes selecting a first FFR pattern from among the plurality of FFR patterns received from the management system and transmitting downlink transmissions in accordance with the first FFR pattern.