Abstract:
A marine outboard engine includes an internal combustion engine including at least one fuel injector; a fuel vapor separator including: a separator body, a fuel reservoir defined by the separator body, and a first fuel pump fluidly connected between the fuel reservoir and the fuel injector; a fuel tank; and a second fuel pump fluidly connected between the fuel tank and the fuel vapor separator. The fuel vapor separator includes a heat exchanger disposed in the separator body. The heat exchanger includes at least one fuel channel defined by the heat exchanger body, the at least one fuel channel including: an inlet adapted for receiving fuel from the engine, and an outlet fluidly communicating with the fuel reservoir; and at least one coolant channel defined by the heat exchanger body, the at least one fuel channel and the at least one coolant channel being in thermal communication.
Abstract:
An exhaust valve system for a two-stroke internal combustion engine having: at least one exhaust valve movable between open and closed positions; an actuator for moving the at least one exhaust valve; a valve position sensor; a controller communicating with the actuator and the valve position sensor. The controller being programmed for: controlling the actuator to attempt to move the at least one exhaust valve to a desired one of the open and closed positions; determining if the at least one exhaust valve has failed to reach the desired position based on the position of the at least one exhaust valve sensed by the valve position sensor; and controlling the actuator to move the at least one exhaust valve to an intermediate position when the at least one exhaust valve has failed to reach the desired position.
Abstract:
An exhaust valve assembly for a two-stroke internal combustion engine has a housing adapted for connection to an engine block of the two-stroke internal combustion engine; an electric actuator having an electric motor, the electric motor being disposed in the housing; and at least one reciprocating exhaust valve operatively connected to the electric actuator. The at least one exhaust valve is linearly movable by the electric motor. A portion of the at least one exhaust valve is disposed in the housing.
Abstract:
An outboard engine assembly has an engine unit including an engine unit housing, an internal combustion engine disposed in the engine unit housing, the engine defining at least one combustion chamber, a gearcase connected to the engine unit housing, and an exhaust system, the exhaust system including an idle relief passage fluidly communicating with an exhaust passage, the idle relief passage having an idle relief outlet, the idle relief passage extending through the engine unit housing for supplying exhaust gases from the at least one combustion chamber to an exterior of the engine unit housing via the idle relief outlet, the idle relief outlet being disposed vertically higher than the exhaust outlet and vertically lower than a waterline when the outboard engine assembly is mounted to a watercraft and the watercraft is at rest, and a propulsion device operatively connected to the engine.
Abstract:
A reciprocating exhaust valve for a two-stroke internal combustion engine has a shaft for connection to a valve actuator, the shaft defining a reciprocation axis of the valve, the reciprocation axis defining a longitudinal direction of the valve; and a blade having: a first end having an arcuate edge, a second end connected to the shaft, two side portions, and a central portion. The blade has a first end portion adjacent the first end that includes a part of the central portion and of each of the two side portions. A width of the central portion is greater than a width of each of the side portions. In the first end portion, a thickness of the part of each of the two side portions is greater than a thickness of the part of the central portion.
Abstract:
A cylinder comprises a cylinder axis, a cylindrical wall, and an exhaust port defined in the wall. At least one central transfer port and at least two side transfer ports are defined in the wall. Each of the at least one central transfer port and each of the at least two side transfer ports has a transfer channel extending therefrom. For each of the at least one central transfer port, an angle about the cylinder axis between a center of the central transfer port and a center of the exhaust port is greater than 135° and less than or equal to 180°. For each of the at least two side transfer ports, an angle about the cylinder axis between a center of the side transfer port and the center of the exhaust port is less than or equal to 135°. Engines and cylinder blocks are also disclosed.