Solid state conversion of polycrystalline material

    公开(公告)号:US11584656B2

    公开(公告)日:2023-02-21

    申请号:US17221913

    申请日:2021-04-05

    Abstract: Systems, devices, and techniques for manufacturing a crystalline material (e.g., large crystal material) through the solid state conversion of a polycrystalline material are described. A device may be configured to concurrently heat a volume of ribbon, such as an alumina ribbon, using multiple heat sources. For example, a first heat source may heat a first volume of the ribbon and a second heat source may concurrently heat a second volume, for example, within the first volume, where the ribbon may comprise polycrystalline material. The concurrent heating may drive grain growth in the polycrystalline material in at least the second volume, which may convert the polycrystalline material to crystalline material having one or more grains that are larger than one or more grains of the polycrystalline material. The processed ribbon may include a large crystal material or a single crystal material.

    SOLID-STATE ELECTROLYTE SHEET, SOLID OXIDE FUEL CELL, SOLID OXIDE ELECTROLYZER CELL, AND METHODS OF MAKING THE SAME

    公开(公告)号:US20250079491A1

    公开(公告)日:2025-03-06

    申请号:US18814812

    申请日:2024-08-26

    Abstract: A solid-state electrolyte sheet includes scandia-stabilized zirconia grains and a thickness from 10 micrometers to 300 micrometers. In aspects, the solid-state electrolyte sheet exhibits an ionic conductivity at 850° C. of 9.5 S/cm or more. In aspects, the scandia-stabilized zirconia grains includes from 3 mol % to 11 mol % or from 3 mol % to 6 mol % scandia. In aspects, an average grain size can be from 0.1 micrometers to 2.5 micrometers. In aspects, a majority of pores can be a closed porosity. In aspects, the solid-state electrolyte sheet can be part of a solid oxide fuel cell and/or a solid oxide electrolyzer cell. Methods include casting a green tape comprising scandia-stabilized zirconia and firing the green tape to form the solid-state electrolyte sheet. In aspects, the firing can include heating at a maximum temperature of 1650° C. or less and/or heating at temperatures of 600° C. or more for 90 minutes or less.

    SOLID STATE CONVERSION OF POLYCRYSTALLINE MATERIAL

    公开(公告)号:US20230166976A1

    公开(公告)日:2023-06-01

    申请号:US18104377

    申请日:2023-02-01

    CPC classification number: C01F7/021 C01P2004/10 C01P2004/61

    Abstract: Systems, devices, and techniques for manufacturing a crystalline material (e.g., large crystal material) through the solid state conversion of a polycrystalline material are described. A device may be configured to concurrently heat a volume of ribbon, such as an alumina ribbon, using multiple heat sources. For example, a first heat source may heat a first volume of the ribbon and a second heat source may concurrently heat a second volume, for example, within the first volume, where the ribbon may comprise polycrystalline material. The concurrent heating may drive grain growth in the polycrystalline material in at least the second volume, which may convert the polycrystalline material to crystalline material having one or more grains that are larger than one or more grains of the polycrystalline material. The processed ribbon may include a large crystal material or a single crystal material.

    SOLID STATE CONVERSION OF POLYCRYSTALLINE MATERIAL

    公开(公告)号:US20210316999A1

    公开(公告)日:2021-10-14

    申请号:US17221913

    申请日:2021-04-05

    Abstract: Systems, devices, and techniques for manufacturing a crystalline material (e.g., large crystal material) through the solid state conversion of a polycrystalline material are described. A device may be configured to concurrently heat a volume of ribbon, such as an alumina ribbon, using multiple heat sources. For example, a first heat source may heat a first volume of the ribbon and a second heat source may concurrently heat a second volume, for example, within the first volume, where the ribbon may comprise polycrystalline material. The concurrent heating may drive grain growth in the polycrystalline material in at least the second volume, which may convert the polycrystalline material to crystalline material having one or more grains that are larger than one or more grains of the polycrystalline material. The processed ribbon may include a large crystal material or a single crystal material.

Patent Agency Ranking