Abstract:
Disclosed is a liquid crystal display apparatus which is reduced in an overall size and a weight of thereof. A lamp cover for protecting a lamp is disposed directly contacting a first sidewall of a bottom chassis. A light guiding plate for guiding the light from the lamp to a display unit and optical sheets for controlling a visual angle of the light are fixed in a receiving space of the bottom chassis by a guide frame which is installed at a second sidewall of the bottom chassis perpendicular to the lamp. Therefore, the size of the liquid crystal display device can be reduced by a thickness of the sidewall of a conventional mold frame. A mold frame having a low thermal conductivity does not exist between the lamp cover and the sidewall of the bottom chassis, so the heat generated from the lamp can be easily discharged.
Abstract:
Disclosed is a liquid crystal display device for realizing a large surface display screen. The liquid crystal display device has a light guiding plate formed at least at one portion of a light source for converting a light generated from the light source into a planar light having a uniform luminance and advancing in a first direction. Light control member composed of a semitransparent or an opaque material is formed between the light guiding plate and the light source for preventing the light from directly advancing in the first direction. With improvement of the structure of a light supply unit, the liquid crystal display device can have much simplified construction and be easily manufactured. Also, the light guiding plate can have greatly reduced thickness by forming the light control member, and the liquid crystal display device can have a large surface display screen because a luminance of an image displayed on the screen is uniformly maintained by means of uniformly maintaining the luminance of light emitted the light source.
Abstract:
A liquid crystal display of a large screen size, a slim thickness and light weight is disclosed. The liquid crystal display includes a light supply unit group having at least two light guiding plates arranged in parallel and at least one lamp unit coupled to one side of the light guiding plate. A light control element is mounted on an upper surface of the light supply unit group, and uniformly controls luminance between the light guiding plate and the lamp unit. A reflective plate is disposed on a rear surface of the light supply unit group and has a shape corresponding to the rear surface of the light supply unit group. A back light assembly includes a receiving container that receives the light supply unit group, the light control element, and the reflective plate.
Abstract:
Disclosed is a liquid crystal display device that can simplify the assembly process of the liquid crystal display device and improve productivity. A sidewall of a shield case is extended to correspond to a sidewall of a top chassis. A burring is formed at the sidewall of the shield case to coupled with a screw, the burring corresponding to an engagement hole formed at the sidewall of the top chassis. Therefore, the production cost can be reduced by decreasing the parts of the liquid crystal display device, and the productivity can be improved due to simplification of the assembly process of the liquid crystal display device.
Abstract:
A liquid crystal display of a large screen size, a slim thickness and light weight is disclosed. The liquid crystal display includes a light supply unit group having at least two light guiding plates arranged in parallel and at least one lamp unit coupled to one side of the light guiding plate. A light control element is mounted on an upper surface of the light supply unit group, and uniformly controls luminance between the light guiding plate and the lamp unit. A reflective plate is disposed on a rear surface of the light supply unit group and has a shape corresponding to the rear surface of the light supply unit group. A back light assembly includes a receiving container that receives the light supply unit group, the light control element, and the reflective plate.
Abstract:
Disclosed are an optical member (100), a backlight assembly (500) and a liquid crystal display device (800) using the optical member. The optical member (100) includes an optical body (110) and a first fixing part (120). The optical body varies optical characteristic of first light incident into thereto to exit a second light. The first fixing part (120) is protruded from at least one side face of the optical body (110), and including a fixing hole (122) and a vibration attenuating means (124). The fixing hole (122) is elongated in a main expansion direction of the optical body (110), and the vibration attenuating means (124) is formed on an inner of the fixing hole to attenuate external vibration applied to the optical body (110). The fixing hole (122) allows movement of the optical member (100) in accordance with expansion of the optical member (100) caused by heat, thereby preventing wrinkles from being created on the optical body. The vibration attenuating member (124) prevents the optical body from being scratched.
Abstract:
Disclosed are an optical member (100), a backlight assembly (500) and a liquid crystal display device (800) using the optical member. The optical member (100) includes an optical body (110) and a first fixing part (120). The optical body varies optical characteristic of first light incident into thereto to exit a second light. The first fixing part (120) is protruded from at least one side face of the optical body (110), and including a fixing hole (122) and a vibration attenuating means (124). The fixing hole (122) is elongated in a main expansion direction of the optical body (110), and the vibration attenuating means (124) is formed on an inner of the fixing hole to attenuate external vibration applied to the optical body (110). The fixing hole (122) allows movement of the optical member (100) in accordance with expansion of the optical member (100) caused by heat, thereby preventing wrinkles from being created on the optical body. The vibration attenuating member (124) prevents the optical body from being scratched.