-
公开(公告)号:US20240362481A1
公开(公告)日:2024-10-31
申请号:US18662481
申请日:2024-05-13
Applicant: DeepMind Technologies Limited
Inventor: Volodymyr Mnih , Adrià Puigdomènech Badia , Alexander Benjamin Graves , Timothy James Alexander Harley , David Silver , Koray Kavukcuoglu
Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for asynchronous deep reinforcement learning. One of the systems includes a plurality of workers, wherein each worker is configured to operate independently of each other worker, and wherein each worker is associated with a respective actor that interacts with a respective replica of the environment during the training of the deep neural network.
-
公开(公告)号:US20210166127A1
公开(公告)日:2021-06-03
申请号:US17170316
申请日:2021-02-08
Applicant: DeepMind Technologies Limited
Inventor: Volodymyr Mnih , Adrià Puigdomènech Badia , Alexander Benjamin Graves , Timothy James Alexander Harley , David Silver , Koray Kavukcuoglu
Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for asynchronous deep reinforcement learning. One of the systems includes a plurality of workers, wherein each worker is configured to operate independently of each other worker, and wherein each worker is associated with a respective actor that interacts with a respective replica of the environment during the training of the deep neural network.
-
公开(公告)号:US10832134B2
公开(公告)日:2020-11-10
申请号:US15374974
申请日:2016-12-09
Applicant: DeepMind Technologies Limited
Inventor: Alexander Benjamin Graves , Ivo Danihelka , Timothy James Alexander Harley , Malcolm Kevin Campbell Reynolds , Gregory Duncan Wayne
Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for augmenting neural networks with an external memory. One of the systems includes a memory interface subsystem that is configured to perform operations comprising determining a respective content-based weight for each of a plurality of locations in an external memory; determining a respective allocation weight for each of the plurality of locations in the external memory; determining a respective final writing weight for each of the plurality of locations in the external memory from the respective content-based weight for the location and the respective allocation weight for the location; and writing data defined by the write vector to the external memory in accordance with the final writing weights.
-
公开(公告)号:US20200226446A1
公开(公告)日:2020-07-16
申请号:US16831566
申请日:2020-03-26
Applicant: DeepMind Technologies Limited
Inventor: Alexander Benjamin Graves , Ivo Danihelka , Gregory Duncan Wayne
Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for augmenting neural networks with an external memory. One of the methods includes providing an output derived from a first portion of a neural network output as a system output; determining one or more sets of writing weights for each of a plurality of locations in an external memory; writing data defined by a third portion of the neural network output to the external memory in accordance with the sets of writing weights; determining one or more sets of reading weights for each of the plurality of locations in the external memory from a fourth portion of the neural network output; reading data from the external memory in accordance with the sets of reading weights; and combining the data read from the external memory with a next system input to generate the next neural network input.
-
公开(公告)号:US12020155B2
公开(公告)日:2024-06-25
申请号:US17733594
申请日:2022-04-29
Applicant: DeepMind Technologies Limited
Inventor: Volodymyr Mnih , Adrià Puigdomènech Badia , Alexander Benjamin Graves , Timothy James Alexander Harley , David Silver , Koray Kavukcuoglu
Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for asynchronous deep reinforcement learning. One of the systems includes a plurality of workers, wherein each worker is configured to operate independently of each other worker, and wherein each worker is associated with a respective actor that interacts with a respective replica of the environment during the training of the deep neural network.
-
公开(公告)号:US11210579B2
公开(公告)日:2021-12-28
申请号:US16831566
申请日:2020-03-26
Applicant: DeepMind Technologies Limited
Inventor: Alexander Benjamin Graves , Ivo Danihelka , Gregory Duncan Wayne
Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for augmenting neural networks with an external memory. One of the methods includes providing an output derived from a first portion of a neural network output as a system output; determining one or more sets of writing weights for each of a plurality of locations in an external memory; writing data defined by a third portion of the neural network output to the external memory in accordance with the sets of writing weights; determining one or more sets of reading weights for each of the plurality of locations in the external memory from a fourth portion of the neural network output; reading data from the external memory in accordance with the sets of reading weights; and combining the data read from the external memory with a next system input to generate the next neural network input.
-
公开(公告)号:US11151443B2
公开(公告)日:2021-10-19
申请号:US15424685
申请日:2017-02-03
Applicant: DeepMind Technologies Limited
Inventor: Ivo Danihelka , Gregory Duncan Wayne , Fu-min Wang , Edward Thomas Grefenstette , Jack William Rae , Alexander Benjamin Graves , Timothy Paul Lillicrap , Timothy James Alexander Harley , Jonathan James Hunt
Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for augmenting neural networks with an external memory. One of the systems includes a sparse memory access subsystem that is configured to perform operations comprising generating a sparse set of reading weights that includes a respective reading weight for each of the plurality of locations in the external memory using the read key, reading data from the plurality of locations in the external memory in accordance with the sparse set of reading weights, generating a set of writing weights that includes a respective writing weight for each of the plurality of locations in the external memory, and writing the write vector to the plurality of locations in the external memory in accordance with the writing weights.
-
公开(公告)号:US11010663B2
公开(公告)日:2021-05-18
申请号:US15395553
申请日:2016-12-30
Applicant: DeepMind Technologies Limited
Inventor: Ivo Danihelka , Nal Emmerich Kalchbrenner , Gregory Duncan Wayne , Benigno Uría-Martínez , Alexander Benjamin Graves
Abstract: Systems, methods, and apparatus, including computer programs encoded on a computer storage medium, related to associative long short-term memory (LSTM) neural network layers configured to maintain N copies of an internal state for the associative LSTM layer, N being an integer greater than one. In one aspect, a system includes a recurrent neural network including an associative LSTM layer, wherein the associative LSTM layer is configured to, for each time step, receive a layer input, update each of the N copies of the internal state using the layer input for the time step and a layer output generated by the associative LSTM layer for a preceding time step, and generate a layer output for the time step using the N updated copies of the internal state.
-
公开(公告)号:US10650302B2
公开(公告)日:2020-05-12
申请号:US14885086
申请日:2015-10-16
Applicant: DeepMind Technologies Limited
Inventor: Alexander Benjamin Graves , Ivo Danihelka , Gregory Duncan Wayne
Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for augmenting neural networks with an external memory. One of the methods includes providing an output derived from a first portion of a neural network output as a system output; determining one or more sets of writing weights for each of a plurality of locations in an external memory; writing data defined by a third portion of the neural network output to the external memory in accordance with the sets of writing weights; determining one or more sets of reading weights for each of the plurality of locations in the external memory from a fourth portion of the neural network output; reading data from the external memory in accordance with the sets of reading weights; and combining the data read from the external memory with a next system input to generate the next neural network input.
-
公开(公告)号:US10346741B2
公开(公告)日:2019-07-09
申请号:US15977923
申请日:2018-05-11
Applicant: DeepMind Technologies Limited
Inventor: Volodymyr Mnih , Adrià Puigdomènech Badia , Alexander Benjamin Graves , Timothy James Alexander Harley , David Silver , Koray Kavukcuoglu
Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for asynchronous deep reinforcement learning. One of the systems includes a plurality of workers, wherein each worker is configured to operate independently of each other worker, and wherein each worker is associated with a respective actor that interacts with a respective replica of the environment during the training of the deep neural network.
-
-
-
-
-
-
-
-
-