Abstract:
A fuel cell cassette for forming a fuel cell stack along a fuel cell axis includes a cell retainer, a plate positioned axially to the cell retainer and defining a space axially with the cell retainer, and a fuel cell having an anode layer and a cathode layer separated by an electrolyte layer. The outer perimeter of the fuel cell is positioned in the space between the plate and the cell retainer, thereby retaining the fuel cell and defining a cavity between the cell retainer, the fuel cell, and the plate. The fuel cell cassette also includes a seal disposed within the cavity for sealing the edge of the fuel cell. The seal is compliant at operational temperatures of the fuel cell, thereby allowing lateral expansion and contraction of the fuel cell within the cavity while maintaining sealing at the edge of the fuel cell.
Abstract:
A fuel cell stack includes a plurality of fuel cell cassettes each including a fuel cell with an anode and a cathode. Each fuel cell cassette also includes an electrode interconnect adjacent to the anode or the cathode for providing electrical communication between an adjacent fuel cell cassette and the anode or the cathode. The interconnect includes a plurality of electrode interconnect protrusions defining a flow passage along the anode or the cathode for communicating oxidant or fuel to the anode or the cathode. An electrically conductive material is disposed between at least one of the electrode interconnect protrusions and the anode or the cathode in order to provide a stable electrical contact between the electrode interconnect and the anode or cathode. An encapsulating arrangement segregates the electrically conductive material from the flow passage thereby, preventing volatilization of the electrically conductive material in use of the fuel cell stack.