Abstract:
An evaporator has a manifold and a plurality of refrigerant tubes extending downward in the direction of gravity from the manifold. The evaporator includes at least one PCM housing engaging the upper portion of the refrigerant tube for storing a phase change material. When operating in a first operating mode, heat is transferred from the phase change material to the refrigerant to freeze and cool the phase change material. When operating in a second operating mode, heat is transferred from the refrigerant to the frozen phase change material to condense the refrigerant. The condensed refrigerant falls downwardly through the tubes and receives heat from a flow of air to cool the air and evaporate the refrigerant. The evaporated refrigerant rises upwardly back to the low pressure of the cold manifold.
Abstract:
An automotive evaporator heat exchanger is provided having a hybrid expansion device configured to aliquot refrigerant across the refrigerant tubes. The hybrid expansion device includes a first stage refrigerant pressure drop device and a second stage refrigerant pressure drop device. The first stage refrigerant pressure drop device is a TXV configured to receive and expand a liquid phase refrigerant into a first mixture of two phase refrigerant and the second stage refrigerant pressure drop device is a tube extending within the inlet manifold configured to expand the first mixture of two phase refrigerant into a second mixture of two phase refrigerant. The tube includes a plurality of orifices and a tube diameter large enough to prevent resistance to refrigerant flow, but, small enough to prevent the first mixture of two phase refrigerant flow from separating into liquid and vapor strata.
Abstract:
A heat exchanger includes a stack of heat exchanger plate pairs that each define an internal volume and include an inlet and an outlet such that a first medium flows from the inlet to the outlet along a flow axis. The inlets together form an inlet header through the heat exchanger plate pairs and the outlets together form an outlet header through the heat exchanger plate pairs. The heat exchanger also includes an array of fins disposed between and in thermal contact with adjacent heat exchanger plate pairs. The array of fins defines flow channels between the adjacent heat exchanger plate pairs such that a second medium flows through the flow channels along the flow axis. One end of the array of fins includes a cut-out area which causes a first portion of the array of fins to be positioned laterally from either the inlet header or the outlet header.