Abstract:
A computer-implemented method and system automatically creates data for use by a computer-aided simulation process. The method and system determine that a CAD model component represents a real-world object that is a fastener. The method and system automatically analyze the CAD component and derive properties for use by the simulation process. The derived properties include size data, location data, and material type data. The method and system automatically calculate a zone of influence of the CAD component on another CAD component. The simulation process utilizes at least one of the properties to calculate the zone of influence to simulate a real-world assembly of which the fastener is a component.
Abstract:
A computer-implemented method and system automatically creates data for use by a computer-aided simulation process. The method and system determine that a CAD model component represents a real-world object that is a fastener. The method and system automatically analyze the CAD component and derive properties for use by the simulation process. The derived properties include size data, location data, and material type data. The method and system automatically calculate a zone of influence of the CAD component on another CAD component. The simulation process utilizes at least one of the properties to calculate the zone of influence to simulate a real-world assembly of which the fastener is a component.
Abstract:
A computer-implemented method and system automatically detects stress singularity in a three-dimensional (3D) computer-aided design (CAD) model. A potential area of high stress is detected. A finite element mesh of the 3D CAD model is refined, at least in the potential area of high stress, after which, whether the high stress value converges is determined. A user is alerted that the potential area of high stress is an area having one or more elements of stress singularity. Suggestions are made regarding how to eliminate the stress singularity and the user is enabled to modify the design of the 3D CAD model to eliminate the stress singularity.