Abstract:
A wind turbine captures energy from a flowing fluid medium using drum-shaped drive elements that spin while traveling along a continuous orbiting course around a base. Attached roller bearings engaging stationary raceways can guide the drive elements. Means for spinning the drive elements can include toothed belts engaging drive element cog wheels. Spinning can provide Magnus effect enhancement. Wind energy is captured by the drive element motion, then transferred to the base cog wheels by a toothed belt and finally fed to an output shaft. The invention includes locating drive elements in a moving fluid medium, spinning the drive elements as they are urged by the wind along a continuous orbiting course and capturing energy by linking the motion of the drive elements to an external device. The method includes adjusting the base's azimuth and the angle of incidence of the wind in response to wind direction and speed.
Abstract:
A wind turbine captures energy from a flowing fluid medium using drum-shaped drive elements that spin while traveling along a continuous orbiting course around a base. Attached roller bearings engaging stationary raceways can guide the drive elements. Means for spinning the drive elements can include toothed belts engaging drive element cog wheels. Spinning can provide Magnus effect enhancement. Wind energy is captured by the drive element motion, then transferred to the base cog wheels by a toothed belt and finally fed to an output shaft. The invention includes locating drive elements in a moving fluid medium, spinning the drive elements as they are urged by the wind along a continuous orbiting course and capturing energy by linking the motion of the drive elements to an external device. The method includes adjusting the base's azimuth and the angle of incidence of the wind in response to wind direction and speed.