MONITORING OF HYDROPROCESSED FLUIDS BY OPTICAL SPECTROSCOPY

    公开(公告)号:US20210115344A1

    公开(公告)日:2021-04-22

    申请号:US17063065

    申请日:2020-10-05

    Abstract: Systems and methods are provided to allow for characterization of feeds, intermediate effluents, and/or products during lubricant base stock production. More generally, the systems and methods can allow for characterization of aromatics in various types of hydroprocessed intermediate effluents and/or products. In some aspects, the characterization can include measuring a fluorescence excitation-emission matrix spectrum for a sample, and then generating a representation of the spectrum by fitting the measured spectrum to a linear combination of spectra corresponding to compounds or compound classes. As the hydroprocessing process continues, additional measured spectra and comparing the fit quality of the representation to the subsequently measured spectra. When the fit quality falls below a threshold value, the loss in fit quality indicates a change in the number and/or distribution of aromatics in the sample. In other aspects, fluorescence excitation-emission spectroscopy can be used to characterize the amount of aromatics within a sample that correspond to one or more fluorescence compound classes. Based on this characterization, adjustments can be made to a process to reduce undesirable levels of aromatics, such as undesirable levels of polynuclear aromatics.

    Monitoring of hydroprocessed fluids by optical spectroscopy

    公开(公告)号:US11198825B2

    公开(公告)日:2021-12-14

    申请号:US17063065

    申请日:2020-10-05

    Abstract: Systems and methods are provided to allow for characterization of feeds, intermediate effluents, and/or products during lubricant base stock production. More generally, the systems and methods can allow for characterization of aromatics in various types of hydroprocessed intermediate effluents and/or products. In some aspects, the characterization can include measuring a fluorescence excitation-emission matrix spectrum for a sample, and then generating a representation of the spectrum by fitting the measured spectrum to a linear combination of spectra corresponding to compounds or compound classes. As the hydroprocessing process continues, additional measured spectra and comparing the fit quality of the representation to the subsequently measured spectra. When the fit quality falls below a threshold value, the loss in fit quality indicates a change in the number and/or distribution of aromatics in the sample. In other aspects, fluorescence excitation-emission spectroscopy can be used to characterize the amount of aromatics within a sample that correspond to one or more fluorescence compound classes. Based on this characterization, adjustments can be made to a process to reduce undesirable levels of aromatics, such as undesirable levels of polynuclear aromatics.

Patent Agency Ranking