Abstract:
The magnetic recording medium includes a magnetic layer containing a ferromagnetic powder and a binder on a nonmagnetic support, wherein the ferromagnetic powder is an ε-iron oxide powder, and the magnetic layer comprises a compound comprising at least one substituent selected from the group consisting of a hydroxyl group and a quaternary ammonium salt group.
Abstract:
The method of manufacturing magnetic particles, wherein the magnetic particles are magnetic particles for magnetic recording, and includes subjecting starting material magnetic particles to glass component-adhering treatment to be adhered with a glass component, and subjecting the magnetic particles after the glass component-adhering treatment to coercive force-reducing treatment with heating, to provide magnetic particles having lower coercive force than the starting material magnetic particles.
Abstract:
The method of manufacturing hexagonal ferrite magnetic particles, which includes providing hexagonal ferrite magnetic particles by conducting calcination of particles comprising an alkaline earth metal salt and an iron salt to cause ferritization; and further includes causing a glass component to adhere to the particles and then conducting the calcination of the particles to form a calcined product in which hexagonal ferrite is detected as a principal component in X-ray diffraction analysis; and removing the glass component from a surface of the calcined product that has been formed.
Abstract:
The method of manufacturing hexagonal ferrite magnetic particles comprises applying, in a water-based solution, an adhering matter comprising a glass component and an alkaline earth metal to iron oxide particles to which a surfactant adheres, and calcining the iron oxide particles to which the adhering matter adheres to obtain a calcined product in which a main component that is detected by X-ray diffraction analysis is hexagonal ferrite.
Abstract:
The method of manufacturing hexagonal ferrite magnetic particles comprises applying an adhering matter comprising a glass component and an alkaline earth metal to hexagonal ferrite magnetic particles, and subjecting the hexagonal ferrite magnetic particles to which the adhering matter has been applied to a heat treatment.
Abstract:
The magnetic recording medium is a particulate magnetic recording medium for heat-assisted recording, as well as includes a magnetic layer comprising ferromagnetic powder and binder on a nonmagnetic organic material support and a heat-diffusing layer of higher thermal conductivity than the magnetic layer between the nonmagnetic organic material support and the magnetic layer.
Abstract:
The method of manufacturing hexagonal ferrite magnetic particles includes providing hexagonal ferrite magnetic particles by conducting calcination of particles comprising an iron salt and an alkaline earth metal salt to cause ferritization; and further includes preparing the particles comprising an iron salt and an alkaline earth metal salt by adhering a glass component, followed by the alkaline earth metal salt, to the iron salt; and conducting calcination of the particles prepared to form a calcined product in which hexagonal ferrite is detected as a principal component in X-ray diffraction analysis.
Abstract:
An aspect of the present invention relates to a magnetic recording medium comprising a magnetic layer containing a ferromagnetic powder and a binder on a nonmagnetic support, wherein the ferromagnetic powder has a hexagonal ferrite structure, the magnetic layer comprises a coefficient of friction-lowering component in the form of nonmagnetic inorganic particles, and a compound in which a substituent selected from the group consisting of a hydroxyl group and a carboxyl group is directly substituted on an aromatic ring.