Abstract:
A System for Aerodynamic Premixer for Reduced Emissions comprising a premixer is generally cylindrical in form and defined by the relationship in physical space between a first ring, a second ring, and a plurality of radial vanes. The first and second rings are found to be generally equidistant, one from the other, at all points along their facing surfaces. Radial vanes connect the first ring to the second ring and thereby form the premixer.
Abstract:
A System for Aerodynamic Premixer for Reduced Emissions comprising a premixer is generally cylindrical in form and defined by the relationship in physical space between a first ring, a second ring, and a plurality of radial vanes. The first and second rings are found to be generally equidistant, one from the other, at all points along their facing surfaces. Radial vanes connect the first ring to the second ring and thereby form the premixer.
Abstract:
The present disclosure is directed to a combustor assembly for a gas turbine engine. The combustor assembly includes a fuel nozzle comprising a centerbody extended along a lengthwise direction, wherein the fuel nozzle defines a nozzle centerline extended through the centerbody along the lengthwise direction. The centerbody defines a plurality of exit openings in circumferential arrangement relative to the nozzle centerline. The plurality of exit openings defines two or more locations different from one another on the centerbody along the lengthwise direction.
Abstract:
The present disclosure is directed to a fuel nozzle assembly for a gas turbine engine. The fuel nozzle assembly includes a centerbody extended along a nozzle centerline axis and generally concentric thereto and an outer sleeve surrounding the centerbody and extended along the nozzle centerline axis and generally concentric thereto. The centerbody defines an outer wall extended at least partially along the nozzle centerline axis in which the centerbody defines a first fuel passage therewithin and one or more first fuel exit openings through the outer wall. Each first fuel exit opening is discrete from another along the outer wall. The outer sleeve and centerbody together define a first air passage therebetween. The first fuel passage and the first fuel exit opening are in fluid communication with the first air passage. The fuel nozzle assembly provides a first flow of fuel through the first fuel passage and first exit opening and a first flow of air through the first air passage, the first flow of fuel defines a jet in crossflow mixing with the first flow of air.
Abstract:
A fuel nozzle for a gas turbine engine includes an outer body defining a plurality of openings in an exterior surface. The fuel nozzle also includes a main injection ring disposed at least partially inside the outer body. The main injection ring includes a plurality of fuel posts extending into or through the plurality of openings of the outer body. The plurality of fuel posts include an LP fuel post defining a main fuel orifice, a top surface, and a scarf, the scarf of the LP fuel post extending in the top surface in a first direction relative to the centerline axis away from the main fuel orifice. The plurality of fuel posts also include an HP fuel post defining a main fuel orifice, a top surface, and a scarf, the scarf of the HP fuel post extending in the top surface fin a second direction relative to the centerline axis away from the main fuel orifice, the second direction being at least ninety degrees different than the first direction.
Abstract:
In one aspect, a fuel supply system may include a fuel injector having a primary and a secondary pilot fuel nozzle in fluid communication with a primary and a secondary fuel circuit, respectively, and a main fuel nozzle in fluid communication with a main fuel circuit. The fuel injector may also define a by-pass fuel circuit connected between the primary circuit and the secondary circuit and/or the main circuit. The system may also include a primary fuel manifold configured to be fluidly connected to the primary pilot fuel nozzle via the primary fuel circuit. Moreover, the system may include a by-pass valve provided in operative association with the by-pass fuel circuit. The by-pass valve may be configured to be opened such that a portion of the fuel flowing through the primary circuit from the primary fuel manifold is directed to the secondary circuit and/or the main circuit.
Abstract:
A combustor assembly for a gas turbine engine includes a dome and a deflector positioned adjacent to the dome. One or both of the dome and the deflector define an opening, a component axis extending through the opening, and a radial direction relative to the component axis. The combustor assembly also includes a retainer having an outer member contacting the dome, the deflector or both. The outer member of the retainer defines at least in part a retainer cavity inward of the outer member along the radial direction. The dome, the deflector, or both define a plurality of cooling holes for providing a cooling airflow from the retainer cavity to the opening.
Abstract:
A fuel nozzle for a gas turbine engine includes an outer body extending generally along a centerline axis and defining a plurality of openings in an exterior surface. The fuel nozzle additionally includes a main injection ring disposed at least partially inside the outer body, the main injection ring including a fuel post extending into or through one of the plurality of openings of the outer body. The fuel post defines a spray well and a main fuel orifice, the spray well defining a bottom surface, a side wall, and a taper in the bottom surface extending from the main fuel orifice towards the side wall.
Abstract:
A fuel nozzle apparatus for a gas turbine engine includes: an annular outer body extending parallel to a centerline axis and having an exterior surface, and having a ring of forward openings passing through the exterior surface, and a ring of aft openings passing through the exterior surface, the aft openings positioned axially aft of the forward openings; an annular main injection ring disposed inside the outer body and including: a forward main fuel gallery extending in a circumferential direction; an aft main fuel gallery extending in a circumferential direction; a ring of forward main fuel orifices communicating with the forward main fuel gallery and each aligned with one of the forward openings; a ring of aft main fuel orifices, communicating with the aft main fuel gallery and each aligned with one of the aft openings; and a pilot fuel injector disposed along the centerline axis.
Abstract:
A System for Aerodynamic Premixer for Reduced Emissions comprising a premixer is generally cylindrical in form and defined by the relationship in physical space between a first ring, a second ring, and a plurality of radial vanes. The first and second rings are found to be generally equidistant, one from the other, at all points along their facing surfaces. Radial vanes connect the first ring to the second ring and thereby form the premixer.