Abstract:
An exhaust diffuser is provided having a center body having an inlet adapted for coupling to a turbine. The center body has an outer wall, and a guide member disposed inside the center body. A flow path reducing member is disposed inside the center body. The flow path reducing member is configured to be movable into a first position and a second position. The first position is an inactive position having no impact on an exit flow area of the exhaust diffuser, and the second position is a deployed position that reduces the exit flow area of the exhaust diffuser.
Abstract:
The present disclosure provides an exhaust diffuser for a gas turbine engine. The exhaust diffuser may include a hub, a casing, and a strut extending between the hub and the casing. The hub may include an angled configuration about the strut and a substantially flat configuration downstream of the angled configuration.
Abstract:
The present application provides an exhaust diffuser for a gas turbine engine. The exhaust diffuser may include a hub, a casing, and a strut extending between the hub and the casing. The hub may include an angled configuration about the strut and a substantially flat configuration downstream of the angled configuration.
Abstract:
A gas turbine having a seal sealing a trench cavity defined between a stator inboard face and rotor inboard face. The seal may include a stator overhang that extends axially toward the rotor inboard face. The stator overhang may include an overhang topside, an overhang underside, and an overhang face that is defined therebetween. The trench cavity seal may include a platform lip extending axially from the rotor inboard face toward the stator inboard face and circumferentially spaced turbulators extending axially from the rotor inboard face. An outboard edge and an inboard edge of the stator overhang axially jut such that, therebetween, a recessed pocket on the overhang face is formed. The platform lip may radially overlaps the recessed pocket on the overhang face so to form a multiple switch-back flowpath.
Abstract:
An exhaust diffuser includes an outer shroud and an inner shroud radially separated from the outer shroud so as to define a fluid passage between the outer shroud and the inner shroud. A strut extends between the outer shroud and the inner shroud. The strut generally includes an outer surface, a leading edge, a trailing edge, a first side and a second side. At least one turbulator may be positioned along a radial span of the strut. The at least one turbulator extends generally outwardly from the strut outer surface. The turbulator extends across the leading edge of the strut from the first side to the second side of the strut.
Abstract:
An exhaust gas diffuser for a gas turbine generally includes an inner wall that extends along an axial centerline of the exhaust gas diffuser. An outer wall is coaxially aligned with the inner wall. The outer wall is radially separated from the inner wall so as to define a flow passage therebetween. An airfoil shaped strut is disposed in the flow passage. The strut extends between the inner and the outer walls. The strut includes a leading edge and a trailing edge positioned relative to a direction of flow through the flow passage. The leading edge and the trailing edge are tapered from the inner wall to the outer wall in the direction of flow through the passage.
Abstract:
A gas turbine diffuser for use with a gas turbine power system is provided. The diffuser includes an annular inner wall and an annular outer wall circumscribing the inner wall such that a gas path is defined between the inner and outer walls. The diffuser further includes a plurality of circumferentially-spaced struts extending from the inner wall to the outer wall across the gas path. At least one of the struts has a flap.
Abstract:
A gas turbine diffuser for use with a gas turbine power system is provided. The diffuser includes an annular inner wall and an annular outer wall circumscribing the inner wall such that a gas path is defined between the inner and outer walls. The diffuser further includes a plurality of circumferentially-spaced struts extending from the inner wall to the outer wall across the gas path. At least one of the struts has a flap.
Abstract:
A flow manipulating arrangement for a turbine exhaust diffuser includes a strut having a leading edge and a trailing edge, the strut disposed within the turbine exhaust diffuser. Also included is a plurality of rotatable guide vanes disposed in close proximity to the strut and configured to manipulate an exhaust flow, wherein the plurality of rotatable guide vanes is coaxially aligned and circumferentially arranged relative to each other. Further included is an actuator in operative communication with the plurality of rotatable guide vanes and configured to actuate an adjustment of the plurality of rotatable guide vanes. Yet further included is a circumferential ring operatively coupling the plurality of rotatable guide vanes, wherein the actuator is configured to directly actuate rotation of one of the rotatable guide vanes, and wherein the circumferential ring actuates rotation of the plurality of rotatable guide vanes upon rotational actuation by the actuator.
Abstract:
An exhaust diffuser includes an outer shroud and an inner shroud radially separated from the outer shroud so as to define a fluid passage between the outer shroud and the inner shroud. A strut extends between the outer shroud and the inner shroud. The strut generally includes an outer surface, a leading edge, a trailing edge, a first side and a second side. At least one turbulator may be positioned along a radial span of the strut. The at least one turbulator extends generally outwardly from the strut outer surface. The turbulator extends across the leading edge of the strut from the first side to the second side of the strut.