Abstract:
A seal apparatus for a rotary machine, including a plurality of sealing assembly segments surrounding a rotor element which is mounted for rotation about a longitudinal axis and has an outer surface. Each of the segments includes a shoe with one or more labyrinth teeth facing the outer surface and a shoe plate disposed downstream of the one or more labyrinth seal teeth and configured to generate an aerodynamic force between the shoe plate and the outer surface of the rotor element. The shoe is further configured to be flexible in a radial-axial plane in response to fluid film forces generated by interaction of the sealing assembly segment and the rotor element, and an axially-oriented beam spring connects the shoe to a stationary seal body.
Abstract:
An article includes a substrate with a coating having asperities such that an average spacing between the asperities is between about 0.01 and about 1.5 micron. An average surface roughness of the coating is up to about 2 microns, and an average porosity of the coating is in the range from about 35% to about 70%. A material to reduce surface energy is disposed on the coating. A method for making such an article and a method for decreasing fluid drag across such an article are also provided.