摘要:
An aircraft ejector nozzle includes a plug assembly (26) located between upper and lower cowlings (18, 20) and upright sidewalls (22). The plug assembly (26) includes separable upper and lower diverters (28, 30). Each diverter includes multiple subsections pivotably attached end-to-end. In one embodiment, first, second, and third subsections (90, 92, 94) are provided. Stationary ejectors (40, 42) located in the cowlings (18, 20) input ambient airflow (44) into an exhaust stream (32). Preferably the ejectors (40, 42) include mixing components (46). Upper and lower aft flaps (48, 50) further tailor the exhaust path shape. An actuation assembly (52) moves the diverters (28, 30) and aft flaps (48, 50) between their various positions. One actuation assembly embodiment includes a number of rotatable disks (118, 120, 132, 134, 142) for guiding the upper and lower diverters (28, 30) and the aft flaps (48, 50). In a first plug assembly configuration the diverter forward ends (84) are positioned together and the diverter aft ends (86) are positioned together. The first configuration forces exhaust (32) around the diverters (28, 30). In a second plug assembly configuration the diverter forward ends (84) are positioned apart and the diverter aft ends (86) are positioned apart. The second configuration forces exhaust (32) between the diverters (28, 30) while simultaneously covering the ejectors (40, 42). Acoustic linings (100) are provided at various locations within the nozzle and are exposed to the exhaust flow only during noise suppression configurations, thus minimizing liner wear and contamination.
摘要:
A moderately high bypass ratio turbofan engine nozzle (36) is provided including an outer structure (46) and one or more ejectors (38). The ejectors (38) include inner and outer doors (82), (80) for closing off an ejector passage (76) extending through the outer structure (46). The ejectors (38) are sized to entrain exterior air (40) at aspiration ratios of generally less than 60%. The exterior air (40) is mixed with engine exhaust (42), resulting in a lower combined airflow velocity which in turn reduces jet exhaust noise. Mixing components formed as turning vanes (108) are located in the ejector passage (76) for encouraging further mixing of the airflows (40), (42). In preferred embodiments, the nozzle (36) further includes a translatable centerbody (52), an aft flap assembly (112), and a control system (122) for controlling the movements of the nozzle components. A method of suppressing aircraft moderately high bypass ratio turbofan engine exhaust noise including entraining exterior air to engine exhaust at an aspiration ratio of less than about 60%.
摘要:
An ejector nozzle (10) including an first cowling (12), a second cowling (14), and opposed upright sidewalls (16) that together form an internal nozzle exhaust path is provided. A reconfigurable plug assembly (18) having separable first and second diverters (20), (22) is located in the exhaust path to direct engine exhaust (24) in either dual paths formed around diverter outer surfaces (76), or dual paths formed between the diverter inner surfaces (74) and centerbody exterior surfaces. When the diverters direct exhaust airflow between themselves, first and second ejectors (26), (28) formed in the first and second cowlings (12), (14), respectively, are available to entrain ambient air (30) into the exhaust stream (24). The preferred ejectors include translatable aft flaps (32), (34). Mixing devices, such as a lobed mixer (90) are incorporated into the diverters (20), (22) to improve engine noise suppression. When the diverters (20), (22) direct exhaust airflow around themselves, the ejectors are closed and the mixing devices are positioned such that they are not significantly exposed to the engine exhaust 24. An actuation assembly moves the diverters (20), (22) and ejectors between various positions.
摘要:
A thrust reverser system including a reverse thrust airflow duct (44) extending through an outer structure (46) of an aircraft engine aft nozzle (32) is disclosed. The reverse thrust duct (44) connects a nozzle exhaust duct (34) with the surrounding atmosphere (46). The duct (44) includes an inlet (72) and an outlet (70). A plurality of slats (50) are located within the reverse thrust duct to direct nozzle exhaust (38) from the nozzle exhaust duct (34) in an outward and/or forward direction. One or more outer doors (54) are formed near the outer structure exterior surface (90) for closing off the reverse thrust duct outlet (70) to the atmosphere. One or more inner doors (56) are provided for closing off the duct inlet (72) at the exhaust duct (34). An actuation system moves the inner and outer doors (56), (54) between open and closed positions. In the open position, the inner and outer doors (56), (54) are moved away from the duct (44) to open the airflow duct inlet and outlet. A portion (98) of the inner door blocks off the nozzle exhaust duct (34) by moving aftward to contact a nozzle centerbody (36). The exhaust air (38) is forced to exit the nozzle (32) via the duct (44) causing reverse thrust.