Abstract:
Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for multilingual prosody generation. In some implementations, data indicating a set of linguistic features corresponding to a text is obtained. Data indicating the linguistic features and data indicating the language of the text are provided as input to a neural network that has been trained to provide output indicating prosody information for multiple languages. The neural network can be a neural network having been trained using speech in multiple languages. Output indicating prosody information for the linguistic features is received from the neural network. Audio data representing the text is generated using the output of the neural network.
Abstract:
Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for multilingual prosody generation. In some implementations, data indicating a set of linguistic features corresponding to a text is obtained. Data indicating the linguistic features and data indicating the language of the text are provided as input to a neural network that has been trained to provide output indicating prosody information for multiple languages. The neural network can be a neural network having been trained using speech in multiple languages. Output indicating prosody information for the linguistic features is received from the neural network. Audio data representing the text is generated using the output of the neural network.
Abstract:
A device may receive a speech signal. The device may determine acoustic feature parameters for the speech signal. The acoustic feature parameters may include phase data. The device may determine circular space representations for the phase data based on an alignment of the phase data with given axes of the circular space representations. The device may map the phase data to linguistic features based on the circular space representations. The linguistic features may be associated with linguistic content that includes phonemic content or text content. The device may provide a synthetic audio pronunciation of the linguistic content based on the mapping.
Abstract:
Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for multilingual prosody generation. In some implementations, data indicating a set of linguistic features corresponding to a text is obtained. Data indicating the linguistic features and data indicating the language of the text are provided as input to a neural network that has been trained to provide output indicating prosody information for multiple languages. The neural network can be a neural network having been trained using speech in multiple languages. Output indicating prosody information for the linguistic features is received from the neural network. Audio data representing the text is generated using the output of the neural network.
Abstract:
In some implementations, a text-to-speech system may perform a mapping of acoustic frames to linguistic model clusters in a pre-selection process for unit selection synthesis. An architecture may leverage data-driven models, such as neural networks that are trained using recorded speech samples, to effectively map acoustic frames to linguistic model clusters during synthesis. This architecture may allow for improved handling and synthesis of combinations of unseen linguistic features.
Abstract:
Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for multilingual prosody generation. In some implementations, data indicating a set of linguistic features corresponding to a text is obtained. Data indicating the linguistic features and data indicating the language of the text are provided as input to a neural network that has been trained to provide output indicating prosody information for multiple languages. The neural network can be a neural network having been trained using speech in multiple languages. Output indicating prosody information for the linguistic features is received from the neural network. Audio data representing the text is generated using the output of the neural network.