Abstract:
A set of benchmark text strings may be classified to provide a set of benchmark classifications. The benchmark text strings in the set may correspond to a benchmark corpus of benchmark utterances in a particular language. A benchmark classification distribution of the set of benchmark classifications may be determined. A respective classification for each text string in a corpus of text strings may also be determined. Text strings from the corpus of text strings may be sampled to form a training corpus of training text strings such that the classifications of the training text strings have a training text string classification distribution that is based on the benchmark classification distribution. The training corpus of training text strings may be used to train an automatic speech recognition (ASR) system.
Abstract:
A method includes accessing data specifying a set of actions, each action defining a user device operation and for each action: accessing a corresponding set of command sentences for the action, determining first n-grams in the set of command sentences that are semantically relevant for the action, determining second n-grams in the set of command sentences that are semantically irrelevant for the action, generating a training set of command sentences from the corresponding set of command sentences, the generating the training set of command sentences including removing each second n-gram from each sentence in the corresponding set of command sentences for the action, and generating a command model from the training set of command sentences configured to generate an action score for the action for an input sentence based on: first n-grams for the action, and second n-grams for the action that are also second n-grams for all other actions.
Abstract:
A method iteratively processes data for a set of actions, including: for each action: accessing a corresponding set of command sentences for the action, determining first n-grams that are semantically relevant for the action and second n-grams that are semantically irrelevant for the action, and identifying, from a log of command sentences that includes command sentences not included in the corresponding set of command sentences, candidate command sentences that include one first n-gram and a third n-gram that has not yet been determined to be a first n-gram or a second n-gram; for each candidate command sentence, determining each third n-gram that is semantically relevant for an action to be a first n-gram, and determining each third n-gram that is semantically irrelevant for an action to be a second n-gram, and adjusting the corresponding set of command sentences for each action based on the first n-grams and the second n-grams.
Abstract:
Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for language models using domain-specific model components. In some implementations, context data for an utterance is obtained. A domain-specific model component is selected from among multiple domain-specific model components of a language model based on the non-linguistic context of the utterance. A score for a candidate transcription for the utterance is generated using the selected domain-specific model component and a baseline model component of the language model that is domain-independent. A transcription for the utterance is determined using the score the transcription is provided as output of an automated speech recognition system.
Abstract:
Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for language models using non-linguistic context. In some implementations, context data indicating non-linguistic context for the utterance is received. Based on the context data, feature scores for one or more non-linguistic features are generated. The feature scores for the non-linguistic features are provided to a language model trained to process scores for non-linguistic features. The output from the language model is received, and a transcription for the utterance is determined using the output of the language model.
Abstract:
Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, relating to enhanced maximum entropy models. In some implementations, data indicating a candidate transcription for an utterance and a particular context for the utterance are received. A maximum entropy language model is obtained. Feature values are determined for n-gram features and backoff features of the maximum entropy language model. The feature values are input to the maximum entropy language model, and an output is received from the maximum entropy language model. A transcription for the utterance is selected from among a plurality of candidate transcriptions based on the output from the maximum entropy language model. The selected transcription is provided to a client device.
Abstract:
A method includes accessing data specifying a set of actions, each action defining a user device operation and for each action: accessing a corresponding set of command sentences for the action, determining first n-grams in the set of command sentences that are semantically relevant for the action, determining second n-grams in the set of command sentences that are semantically irrelevant for the action, generating a training set of command sentences from the corresponding set of command sentences, the generating the training set of command sentences including removing each second n-gram from each sentence in the corresponding set of command sentences for the action, and generating a command model from the training set of command sentences configured to generate an action score for the action for an input sentence based on: first n-grams for the action, and second n-grams for the action that are also second n-grams for all other actions.
Abstract:
Systems and methods for addressing missing features in models are provided. In some implementations, a model configured to indicate likelihoods of different outcomes is accessed. The model includes a respective score for each of a plurality of features, and each feature corresponds to an outcome in an associated context. It is determined that the model does not include a score for a feature corresponding to a potential outcome in a particular context. A score is determined for the potential outcome in the particular context based on the scores for one or more features in the model that correspond to different outcomes in the particular context. The model and the score are used to determine a likelihood of occurrence of the potential outcome.
Abstract:
Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, relating to generating log-linear models. In some implementations, n-gram parameter values derived from an n-gram language model are obtained. N-gram features for a log-linear language model are determined based on the n-grams corresponding to the obtained n-gram parameter values. A weight for each of the determined n-gram features is determined, where the weight is determined based on (i) an n-gram parameter value that is derived from the n-gram language model and that corresponds to a particular n-gram, and (ii) an n-gram parameter value that is derived from the n-gram language model and that corresponds to an n-gram that is a sub-sequence within the particular n-gram. A log-linear language model having the determined n-gram features is generated, where the determined n-gram features in the log-linear language model have weights that are initialized based on the determined weights.
Abstract:
Speech recognition techniques may include: receiving audio; identifying one or more topics associated with audio; identifying language models in a topic space that correspond to the one or more topics, where the language models are identified based on proximity of a representation of the audio to representations of other audio in the topic space; using the language models to generate recognition candidates for the audio, where the recognition candidates have scores associated therewith that are indicative of a likelihood of a recognition candidate matching the audio; and selecting a recognition candidate for the audio based on the scores.