Abstract:
Methods, systems, and apparatus, including computer programs encoded on computer storage media, for computing numeric representations of words. One of the methods includes obtaining a set of training data, wherein the set of training data comprises sequences of words; training a classifier and an embedding function on the set of training data, wherein training the embedding function comprises obtained trained values of the embedding function parameters; processing each word in the vocabulary using the embedding function in accordance with the trained values of the embedding function parameters to generate a respective numerical representation of each word in the vocabulary in the high-dimensional space; and associating each word in the vocabulary with the respective numeric representation of the word in the high-dimensional space.
Abstract:
Methods, systems, and apparatus, including computer programs encoded on computer storage media, for training a model using parameter server shards. One of the methods includes receiving, at a parameter server shard configured to maintain values of a disjoint partition of the parameters of the model, a succession of respective requests for parameter values from each of a plurality of replicas of the model; in response to each request, downloading a current value of each requested parameter to the replica from which the request was received; receiving a succession of uploads, each upload including respective delta values for each of the parameters in the partition maintained by the shard; and updating values of the parameters in the partition maintained by the parameter server shard repeatedly based on the uploads of delta values to generate current parameter values.
Abstract:
Methods, systems, and apparatus, including computer programs encoded on computer storage media, for training a model using parameter server shards. One of the methods includes receiving, at a parameter server shard configured to maintain values of a disjoint partition of the parameters of the model, a succession of respective requests for parameter values from each of a plurality of replicas of the model; in response to each request, downloading a current value of each requested parameter to the replica from which the request was received; receiving a succession of uploads, each upload including respective delta values for each of the parameters in the partition maintained by the shard; and updating values of the parameters in the partition maintained by the parameter server shard repeatedly based on the uploads of delta values to generate current parameter values.
Abstract:
Methods, systems, and apparatus, including computer programs encoded on computer storage media, for scoring concept terms using a deep network. One of the methods includes receiving an input comprising a plurality of features of a resource, wherein each feature is a value of a respective attribute of the resource; processing each of the features using a respective embedding function to generate one or more numeric values; processing the numeric values to generate an alternative representation of the features of the resource, wherein processing the floating point values comprises applying one or more non-linear transformations to the floating point values; and processing the alternative representation of the input to generate a respective relevance score for each concept term in a pre-determined set of concept terms, wherein each of the respective relevance scores measures a predicted relevance of the corresponding concept term to the resource.
Abstract:
Methods, systems, and apparatus, including computer programs encoded on computer storage media, for generating labeled images. One of the methods includes selecting a plurality of candidate videos from videos identified in a response to a search query derived from a label for an object category; selecting one or more initial frames from each of the candidate videos; detecting one or more initial images of objects in the object category in the initial frames; for each initial frame including an initial image of an object in the object category, tracking the object through surrounding frames to identify additional images of the object; and selecting one or more images from the one or more initial images and one or more additional images as database images of objects belonging to the object category.
Abstract:
Methods, systems, and apparatus, including computer programs encoded on computer storage media, for using embedded function with a deep network. One of the methods includes receiving an input comprising a plurality of features, wherein each of the features is of a different feature type; processing each of the features using a respective embedding function to generate one or more numeric values, wherein each of the embedding functions operates independently of each other embedding function, and wherein each of the embedding functions is used for features of a respective feature type; processing the numeric values using a deep network to generate a first alternative representation of the input, wherein the deep network is a machine learning model composed of a plurality of levels of non-linear operations; and processing the first alternative representation of the input using a logistic regression classifier to predict a label for the input.
Abstract:
Methods, systems, and apparatus, including computer programs encoded on computer storage media, for scoring concept terms using a deep network. One of the methods includes receiving an input comprising a plurality of features of a resource, wherein each feature is a value of a respective attribute of the resource; processing each of the features using a respective embedding function to generate one or more numeric values; processing the numeric values to generate an alternative representation of the features of the resource, wherein processing the floating point values comprises applying one or more non-linear transformations to the floating point values; and processing the alternative representation of the input to generate a respective relevance score for each concept term in a pre-determined set of concept terms, wherein each of the respective relevance scores measures a predicted relevance of the corresponding concept term to the resource.
Abstract:
Methods, systems, and apparatus, including computer programs encoded on computer storage media, for computing numeric representations of words. One of the methods includes obtaining a set of training data, wherein the set of training data comprises sequences of words; training a classifier and an embedding function on the set of training data, wherein training the embedding function comprises obtained trained values of the embedding function parameters; processing each word in the vocabulary using the embedding function in accordance with the trained values of the embedding function parameters to generate a respective numerical representation of each word in the vocabulary in the high-dimensional space; and associating each word in the vocabulary with the respective numeric representation of the word in the high-dimensional space.
Abstract:
Methods, systems, and apparatus, including computer programs encoded on computer storage media, for scoring concept terms using a deep network. One of the methods includes receiving an input comprising a plurality of features of a resource, wherein each feature is a value of a respective attribute of the resource; processing each of the features using a respective embedding function to generate one or more numeric values; processing the numeric values to generate an alternative representation of the features of the resource, wherein processing the floating point values comprises applying one or more non-linear transformations to the floating point values; and processing the alternative representation of the input to generate a respective relevance score for each concept term in a pre-determined set of concept terms, wherein each of the respective relevance scores measures a predicted relevance of the corresponding concept term to the resource.
Abstract:
Methods, systems, and apparatus, including computer programs encoded on computer storage media, for using embedded function with a deep network. One of the methods includes receiving an input comprising a plurality of features, wherein each of the features is of a different feature type; processing each of the features using a respective embedding function to generate one or more numeric values, wherein each of the embedding functions operates independently of each other embedding function, and wherein each of the embedding functions is used for features of a respective feature type; processing the numeric values using a deep network to generate a first alternative representation of the input, wherein the deep network is a machine learning model composed of a plurality of levels of non-linear operations; and processing the first alternative representation of the input using a logistic regression classifier to predict a label for the input.