Abstract:
Methods and systems for replacing feature values of features in training data with integer values selected based on a ranking of the feature values. The methods and systems are suitable for preprocessing large-scale machine learning training data.
Abstract:
Implementations of the disclosed subject matter provide methods and systems for using a multistage learner for efficiently boosting large datasets in a machine learning system. A method may include obtaining a first plurality of examples for a machine learning system and selecting a first point in time. Next, a second point in time occurring subsequent to the first point in time may be selected. The machine learning system may be trained using m of the first plurality of examples. Each of the m examples may include a feature initially occurring after the second point in time. In addition, the machine learning system may be trained using n of the first plurality of examples, and each of the n examples may include a feature initially occurring after the first point in time.
Abstract:
Implementations of the disclosed subject matter provide methods and systems for using a multistage learner for efficiently boosting large datasets in a machine learning system. A method may include obtaining a first plurality of examples for a machine learning system and selecting a first point in time. Next, a second point in time occurring subsequent to the first point in time may be selected. The machine learning system may be trained using m of the first plurality of examples. Each of the m examples may include a feature initially occurring after the second point in time. In addition, the machine learning system may be trained using n of the first plurality of examples, and each of the n examples may include a feature initially occurring after the first point in time.
Abstract:
The present disclosure provides systems and techniques for efficient locking of datasets in a database when updates to a dataset may be delayed. A method may include accumulating a plurality of updates to a first set of one or more values associated with one or more features. The first set of one or more values may be stored within a first database column. Next, it may be determined that a first database column update aggregation rule is satisfied. A lock assigned to at least a portion of at least a first database column may be acquired. Accordingly, one or more values in the first set within the first database column may be updated based on the plurality of updates. In an implementation, the first set of one or more values may be associated with the first lock.
Abstract:
Systems and techniques are disclosed for generating weighted machine learned models using multi-shard combiners. A learner in a machine learning system may receive labeled positive and negative examples and workers within the learner may be configured to receive either positive or negative examples. A positive and negative statistic may be calculated for a given feature and may either be applied separately in a model or may be combined to generate an overall statistic.