Abstract:
Methods, systems, and computer program products are provided for machine-specific instruction set translation. One example method includes identifying computing devices, each device having a respective software component installed, the software component including a translator component for translating a program in a portable format to a machine-specific instruction set, and a sandbox component for executing programs translated to the machine-specific instruction set on the computing device using software-based fault isolation; identifying computing devices having a given hardware configuration; and transmitting another translator component and another sandbox component to each of the identified computing devices. Each of the identified computing devices having the given hardware configuration is configured to receive the components and to configure its software component to use the received components in lieu of the corresponding components.
Abstract:
Some embodiments provide a system that executes a native code module. During operation, the system obtains the native code module. Next, the system loads the native code module into a secure runtime environment. Finally, the system safely executes the native code module in the secure runtime environment by using a set of software fault isolation (SFI) mechanisms that constrain store instructions in the native code module. The SFI mechanisms also maintain control flow integrity for the native code module by dividing a code region associated with the native code module into equally sized code blocks and data blocks and starting each of the data blocks with an illegal instruction.
Abstract:
Some embodiments provide a system that executes a native code module. During operation, the system obtains the native code module. Next, the system loads the native code module into a secure runtime environment. Finally, the system safely executes the native code module in the secure runtime environment by using a set of software fault isolation (SFI) mechanisms that constrain store instructions in the native code module. The SFI mechanisms also maintain control flow integrity for the native code module by dividing a code region associated with the native code module into equally sized code blocks and data blocks and starting each of the data blocks with an illegal instruction.
Abstract:
Methods, systems, and computer program products are provided for machine-specific instruction set translation. One example method includes identifying computing devices, each device having a respective software component installed, the software component including a translator component for translating a program in a portable format to a machine-specific instruction set, and a sandbox component for executing programs translated to the machine-specific instruction set on the computing device using software-based fault isolation; identifying computing devices having a given hardware configuration; and transmitting another translator component and another sandbox component to each of the identified computing devices. Each of the identified computing devices having the given hardware configuration is configured to receive the components and to configure its software component to use the received components in lieu of the corresponding components.
Abstract:
Some embodiments provide a system that executes a native code module. During operation, the system obtains the native code module. Next, the system loads the native code module into a secure runtime environment. Finally, the system safely executes the native code module in the secure runtime environment by using a set of software fault isolation (SFI) mechanisms that constrain store instructions in the native code module. The SFI mechanisms also maintain control flow integrity for the native code module by dividing a code region associated with the native code module into equally sized code blocks and data blocks and starting each of the data blocks with an illegal instruction.
Abstract:
Methods, systems, and computer program products are provided for machine-specific instruction set translation. One example method includes identifying computing devices, each device having a respective software component installed, the software component including a translator component for translating a program in a portable format to a machine-specific instruction set, and a sandbox component for executing programs translated to the machine-specific instruction set on the computing device using software-based fault isolation; identifying computing devices having a given hardware configuration; and transmitting another translator component and another sandbox component to each of the identified computing devices. Each of the identified computing devices having the given hardware configuration is configured to receive the components and to configure its software component to use the received components in lieu of the corresponding components.
Abstract:
Some embodiments provide a system that executes a native code module. During operation, the system obtains the native code module. Next, the system loads the native code module into a secure runtime environment. Finally, the system safely executes the native code module in the secure runtime environment by using a set of software fault isolation (SFI) mechanisms that use predicated store instructions and predicated control flow instructions, wherein each predicated instruction from the predicated store instructions and the predicated control flow instructions is executed if a mask condition associated with the predicated instruction is met.
Abstract:
Some embodiments provide a system that executes a native code module. During operation, the system obtains the native code module. Next, the system loads the native code module into a secure runtime environment. Finally, the system safely executes the native code module in the secure runtime environment by using a set of software fault isolation (SFI) mechanisms that constrain store instructions in the native code module. The SFI mechanisms also maintain control flow integrity for the native code module by dividing a code region associated with the native code module into equally sized code blocks and data blocks and starting each of the data blocks with an illegal instruction.
Abstract:
Methods, systems, and apparatuses, including computer programs, for safely executing a native code module for an ARM 64-bit instruction set. The native code module contains native code that is executed within a secure runtime environment that isolates the native code module from sensitive data and resources on the computing system. The native code module is validated by a validator prior to execution within the secure runtime environment to ensure that the native code module complies with a set of security constraints.