Abstract:
In some applications, it may be desirable to position multiple photodetectors at precise locations on a curved focal surface defined by an optical system. To achieve this positioning, the photodetectors may be mounted at desired locations on a flexible substrate that is in a flat configuration. The flexible substrate with mounted photodetectors can then be shaped to substantially conform to the shape of the curved focal surface. This shaping can be accomplished by clamping the flexible substrate between at least two clamping pieces. The curved flexible substrate clamped between the at least two clamping pieces can be positioned relative to the optical system such that the photodetectors are positioned at desired three-dimensional locations on the curved focal surface.
Abstract:
In some applications, it may be desirable to position multiple photodetectors at precise locations on a curved focal surface defined by an optical system. To achieve this positioning, the photodetectors may be mounted at desired locations on a flexible substrate that is in a flat configuration. The flexible substrate with mounted photodetectors can then be shaped to substantially conform to the shape of the curved focal surface. This shaping can be accomplished by clamping the flexible substrate between at least two clamping pieces. The curved flexible substrate clamped between the at least two clamping pieces can be positioned relative to the optical system such that the photodetectors are positioned at desired three-dimensional locations on the curved focal surface.
Abstract:
A device is provided that includes (a) an antenna that includes at least one conductor, (b) a housing that includes an inner-upper surface and an inner-lower surface separated by a first distance, (c) a battery disposed within the housing, where a base surface of the battery is proximate to the inner-lower surface of the housing, where a first portion of the battery has a height, which is substantially equal to the first distance, and where a second portion of the battery is of lesser height than the first portion of the battery such that space exists between the second portion of the battery and the inner-upper surface of the housing, and (d) where the one conductor is arranged over the second portion of the battery in the space, such that the one conductor and the battery do not contact one another, and where, as arranged, the antenna is capable of a far-field communication.
Abstract:
A device is provided that includes (a) an antenna that includes at least one conductor, (b) a housing that includes an inner-upper surface and an inner-lower surface separated by a first distance, (c) a battery disposed within the housing, where a base surface of the battery is proximate to the inner-lower surface of the housing, where a first portion of the battery has a height, which is substantially equal to the first distance, and where a second portion of the battery is of lesser height than the first portion of the battery such that space exists between the second portion of the battery and the inner-upper surface of the housing, and (d) where the one conductor is arranged over the second portion of the battery in the space, such that the one conductor and the battery do not contact one another, and where, as arranged, the antenna is capable of a far-field communication.
Abstract:
Herein are described methods and systems for the automatic measurement of the mass of an object. An example method may begin with detecting by a computing device (such as a wearable computing device) an action that corresponds to a mass-measurement mode. In response to detecting the action, the computing device is caused to operate in the mass-measurement mode. The mass-measurement mode may involve receiving a motion-sensor signal from at least one motion sensor, determining a difference between a frequency-component magnitude of at least one given frequency component and a predetermined frequency-component magnitude, determining a mass of an object based on at least the determined difference between the frequency-component magnitude of the at least one given frequency component from the predetermined frequency-component magnitude, and causing an output device to provide an indication of the determined mass of the object.
Abstract:
Embodiments described herein may allow for the use of active capacitive sensing on a head-mountable device. An example method may involve: sending a first signal that has a first frequency from a signal transmitter positioned on a wearable computing device so that when the wearable computing device is worn, the signal transmitter couples to a part of a wearer of the wearable computing device, receiving a second signal at a capacitive sensor located on the wearable computing device, determining whether the second signal has the first frequency, if the second signal has the first frequency, outputting a third signal that is indicative of manual input on the capacitive sensor, and if the second signal does not have the first frequency, refraining from outputting the third signal.
Abstract:
In some applications, it may be desirable to position multiple photodetectors at precise locations on a curved focal surface defined by an optical system. To achieve this positioning, the photodetectors may be mounted at desired locations on a flexible substrate that is in a flat configuration. The flexible substrate with mounted photodetectors can then be shaped to substantially conform to the shape of the curved focal surface. This shaping can be accomplished by clamping the flexible substrate between at least two clamping pieces. The curved flexible substrate clamped between the at least two clamping pieces can be positioned relative to the optical system such that the photodetectors are positioned at desired three-dimensional locations on the curved focal surface.