Abstract:
Methods and systems for replacing feature values of features in training data with integer values selected based on a ranking of the feature values. The methods and systems are suitable for preprocessing large-scale machine learning training data.
Abstract:
Systems and techniques are disclosed for training a machine learning model based on one or more regularization penalties associated with one or more features. A template having a lower regularization penalty may be given preference over a template having a higher regularization penalty. A regularization penalty may be determined based on domain knowledge. A restrictive regularization penalty may be assigned to a template based on determining that a template occurrence is below a stability threshold and may be modified if the template occurrence meets or exceeds the stability threshold.
Abstract:
Systems and techniques are disclosed for training a machine learning model based on one or more regularization penalties associated with one or more features. A template having a lower regularization penalty may be given preference over a template having a higher regularization penalty. A regularization penalty may be determined based on domain knowledge. A restrictive regularization penalty may be assigned to a template based on determining that a template occurrence is below a stability threshold and may be modified if the template occurrence meets or exceeds the stability threshold.
Abstract:
Implementations of the disclosed subject matter provide methods and systems for using a multistage learner for efficiently boosting large datasets in a machine learning system. A method may include obtaining a first plurality of examples for a machine learning system and selecting a first point in time. Next, a second point in time occurring subsequent to the first point in time may be selected. The machine learning system may be trained using m of the first plurality of examples. Each of the m examples may include a feature initially occurring after the second point in time. In addition, the machine learning system may be trained using n of the first plurality of examples, and each of the n examples may include a feature initially occurring after the first point in time.
Abstract:
Implementations of the disclosed subject matter provide methods and systems for using a multistage learner for efficiently boosting large datasets in a machine learning system. A method may include obtaining a first plurality of examples for a machine learning system and selecting a first point in time. Next, a second point in time occurring subsequent to the first point in time may be selected. The machine learning system may be trained using m of the first plurality of examples. Each of the m examples may include a feature initially occurring after the second point in time. In addition, the machine learning system may be trained using n of the first plurality of examples, and each of the n examples may include a feature initially occurring after the first point in time.
Abstract:
Systems and techniques are provided for template exploration in a large-scale machine learning system. A method may include obtaining multiple base templates, each base template comprising multiple features. A template performance score may be obtained for each base template and a first base template may be selected from among the multiple base templates based on the template performance score of the first base template. Multiple cross-templates may be constructed by generating a cross-template of the selected first base template and each of the multiple base templates. Performance of a machine learning model may be tested based on each cross-template to generate a cross-template performance score for each of the cross-templates. A first cross-template may be selected from among the multiple cross-templates based on the cross-template performance score of the cross-template. Accordingly, the first cross-template may be added to the machine learning model.
Abstract:
The present disclosure provides systems and techniques for efficient locking of datasets in a database when updates to a dataset may be delayed. A method may include accumulating a plurality of updates to a first set of one or more values associated with one or more features. The first set of one or more values may be stored within a first database column. Next, it may be determined that a first database column update aggregation rule is satisfied. A lock assigned to at least a portion of at least a first database column may be acquired. Accordingly, one or more values in the first set within the first database column may be updated based on the plurality of updates. In an implementation, the first set of one or more values may be associated with the first lock.
Abstract:
Systems and techniques are disclosed for generating weighted machine learned models using multi-shard combiners. A learner in a machine learning system may receive labeled positive and negative examples and workers within the learner may be configured to receive either positive or negative examples. A positive and negative statistic may be calculated for a given feature and may either be applied separately in a model or may be combined to generate an overall statistic.