-
公开(公告)号:US20230130634A1
公开(公告)日:2023-04-27
申请号:US17936547
申请日:2022-09-29
Applicant: Google LLC
Inventor: Tara N. Sainath , Rami Botros , Anmol Gulati , Krzysztof Choromanski , Ruoming Pang , Trevor Strohman , Weiran Wang , Jiahui Yu
Abstract: A computer-implemented method includes receiving a sequence of acoustic frames as input to an automatic speech recognition (ASR) model. Here, the ASR model includes a causal encoder and a decoder. The method also includes generating, by the causal encoder, a first higher order feature representation for a corresponding acoustic frame in the sequence of acoustic frames. The method also includes generating, by the decoder, a first probability distribution over possible speech recognition hypotheses. Here, the causal encoder includes a stack of causal encoder layers each including a Recurrent Neural Network (RNN) Attention-Performer module that applies linear attention.
-
公开(公告)号:US20220122586A1
公开(公告)日:2022-04-21
申请号:US17447285
申请日:2021-09-09
Applicant: Google LLC
Inventor: Jiahui Yu , Chung-cheng Chiu , Bo Li , Shuo-yiin Chang , Tara Sainath , Wei Han , Anmol Gulati , Yanzhang He , Arun Narayanan , Yonghui Wu , Ruoming Pang
Abstract: A computer-implemented method of training a streaming speech recognition model that includes receiving, as input to the streaming speech recognition model, a sequence of acoustic frames. The streaming speech recognition model is configured to learn an alignment probability between the sequence of acoustic frames and an output sequence of vocabulary tokens. The vocabulary tokens include a plurality of label tokens and a blank token. At each output step, the method includes determining a first probability of emitting one of the label tokens and determining a second probability of emitting the blank token. The method also includes generating the alignment probability at a sequence level based on the first probability and the second probability. The method also includes applying a tuning parameter to the alignment probability at the sequence level to maximize the first probability of emitting one of the label tokens.
-
公开(公告)号:US12190869B2
公开(公告)日:2025-01-07
申请号:US17936547
申请日:2022-09-29
Applicant: Google LLC
Inventor: Tara N. Sainath , Rami Botros , Anmol Gulati , Krzysztof Choromanski , Ruoming Pang , Trevor Strohman , Weiran Wang , Jiahui Yu
Abstract: A computer-implemented method includes receiving a sequence of acoustic frames as input to an automatic speech recognition (ASR) model. Here, the ASR model includes a causal encoder and a decoder. The method also includes generating, by the causal encoder, a first higher order feature representation for a corresponding acoustic frame in the sequence of acoustic frames. The method also includes generating, by the decoder, a first probability distribution over possible speech recognition hypotheses. Here, the causal encoder includes a stack of causal encoder layers each including a Recurrent Neural Network (RNN) Attention-Performer module that applies linear attention.
-
公开(公告)号:US12094453B2
公开(公告)日:2024-09-17
申请号:US17447285
申请日:2021-09-09
Applicant: Google LLC
Inventor: Jiahui Yu , Chung-cheng Chiu , Bo Li , Shuo-yiin Chang , Tara Sainath , Wei Han , Anmol Gulati , Yanzhang He , Arun Narayanan , Yonghui Wu , Ruoming Pang
IPC: G10L15/06 , G10L15/16 , G10L15/187 , G10L15/22 , G10L15/30
CPC classification number: G10L15/063 , G10L15/16 , G10L15/22 , G10L15/30 , G10L15/187
Abstract: A computer-implemented method of training a streaming speech recognition model that includes receiving, as input to the streaming speech recognition model, a sequence of acoustic frames. The streaming speech recognition model is configured to learn an alignment probability between the sequence of acoustic frames and an output sequence of vocabulary tokens. The vocabulary tokens include a plurality of label tokens and a blank token. At each output step, the method includes determining a first probability of emitting one of the label tokens and determining a second probability of emitting the blank token. The method also includes generating the alignment probability at a sequence level based on the first probability and the second probability. The method also includes applying a tuning parameter to the alignment probability at the sequence level to maximize the first probability of emitting one of the label tokens.
-
公开(公告)号:US20230237993A1
公开(公告)日:2023-07-27
申请号:US18011571
申请日:2021-10-01
Applicant: Google LLC
Inventor: Jiahui Yu , Ruoming Pang , Wei Han , Anmol Gulati , Chung-Cheng Chiu , Bo Li , Tara N. Sainath , Yonghui Hu
Abstract: Systems and methods of the present disclosure are directed to a computing system, including one or more processors and a machine-learned multi-mode speech recognition model configured to operate in a streaming recognition mode or a contextual recognition mode. The computing system can perform operations including obtaining speech data and a ground truth label and processing the speech data using the contextual recognition mode to obtain contextual prediction data. The operations can include evaluating a difference between the contextual prediction data and the ground truth label and processing the speech data using the streaming recognition mode to obtain streaming prediction data. The operations can include evaluating a difference between the streaming prediction data and the ground truth label and the contextual and streaming prediction data. The operations can include adjusting parameters of the speech recognition model.
-
公开(公告)号:US20220207321A1
公开(公告)日:2022-06-30
申请号:US17139525
申请日:2020-12-31
Applicant: Google LLC
Inventor: Anmol Gulati , Ruoming Pang , Niki Parmar , Jiahui Yu , Wei Han , Chung-Cheng Chiu , Yu Zhang , Yonghui Wu , Shibo Wang , Weikeng Qin , Zhengdong Zhang
Abstract: Systems and methods can utilize a conformer model to process a data set for various data processing tasks, including, but not limited to, speech recognition, sound separation, protein synthesis determination, video or other image set analysis, and natural language processing. The conformer model can use feed-forward blocks, a self-attention block, and a convolution block to process data to learn global interactions and relative-offset-based local correlations of the input data.
-
公开(公告)号:US20240362453A1
公开(公告)日:2024-10-31
申请号:US18766038
申请日:2024-07-08
Applicant: Google LLC
Inventor: Anmol Gulati , Weikeng Qin , Zhengdong Zhang , Ruoming Pang , Niki Parmar , Jiahui Yu , Wei Han , Chung-Cheng Chiu , Yu Zhang , Yonghui Wu , Shibo Wang
Abstract: Systems and methods can utilize a conformer model to process a data set for various data processing tasks, including, but not limited to, speech recognition, sound separation, protein synthesis determination, video or other image set analysis, and natural language processing. The conformer model can use feed-forward blocks, a self-attention block, and a convolution block to process data to learn global interactions and relative-offset-based local correlations of the input data.
-
公开(公告)号:US12079703B2
公开(公告)日:2024-09-03
申请号:US17139525
申请日:2020-12-31
Applicant: Google LLC
Inventor: Anmol Gulati , Ruoming Pang , Niki Parmar , Jiahui Yu , Wei Han , Chung-Cheng Chiu , Yu Zhang , Yonghui Wu , Shibo Wang , Weikeng Qin , Zhengdong Zhang
Abstract: Systems and methods can utilize a conformer model to process a data set for various data processing tasks, including, but not limited to, speech recognition, sound separation, protein synthesis determination, video or other image set analysis, and natural language processing. The conformer model can use feed-forward blocks, a self-attention block, and a convolution block to process data to learn global interactions and relative-offset-based local correlations of the input data.
-
-
-
-
-
-
-