Abstract:
First and second external tooth gear parts of a strain wave gearing are bent in an elliptic shape by a wave generator to engage with first and second internal tooth gears, respectively. The first and second external tooth gear parts are bent so as to have elliptic shapes the phases of which are rotated 90 degrees from each other about a rotational center line. A coupling external tooth gear part that maintains a circular cross-sectional shape which does not deform is formed in between the first and second external tooth gear parts. The coupling external tooth gear part is maintained so as to be coupled with a coupling internal tooth gear in an engaged manner. The strain wave gearing has high engagement rigidity and is capable of transmitting large torque.
Abstract:
An externally toothed gear of a strain wave gearing is made to flex into a shape conforming to an ellipsoidal curve. The externally toothed gear meshes with an internally toothed gear at the major-diameter position of the ellipsoidal curve. These two meshing positions gradually change in the circumferential direction of the both gears along the tooth trace direction. The number of external teeth of the externally toothed gear participating in meshing with the internally toothed gear can be increased. A strain wave gearing which has a high rigidity and is capable of reducing vibrational noise, can be realized.