Abstract:
The present invention is to provide, in a combined system of a bioethanol producing device and an SOFC, a method that is capable of further enhancing the electric power generation efficiency of the SOFC, and is also capable of achieving further reduction of the energy required for distillation of the fermented liquid. A part of an anode off-gas is refluxed to the water-containing ethanol vapor line from the mash column to the reforming device at a reflux ratio ((flow rate of reflux gas)/(flow rate of (anode off-gas)−(reflux gas))) of from 1 to 2. The ethanol concentration of the water-containing ethanol vapor is controlled by refluxing, to a range of from 25 to 35% by weight with water contained in the anode off-gas of the solid oxide fuel cell.
Abstract:
A fuel cell system includes a reformer, fuel cell stacks, and an exhaust-gas combustor. The reformer has a tubular shape extending in an axial direction and reforms raw fuel into combustion gas. The fuel cell stacks generate electric power from the fuel gas and oxidant gas. The fuel cell stacks are arranged radially outward of the reformer in a circumferential direction to face the reformer in a radial direction. The exhaust-gas combustor burns fuel gas that is not used and included in exhaust gas from the fuel cell stacks. The exhaust-gas combustor is arranged radially inward of the reformer to face the reformer in the radial direction. Each fuel cell stack includes flat plate type cells stacked in the radial direction. This achieves downsizing of the fuel cell system.
Abstract:
A fuel cell system includes a reformer, fuel cell stacks, and an exhaust-gas combustor. The reformer has a tubular shape extending in an axial direction and reforms raw fuel into combustion gas. The fuel cell stacks generate electric power from the fuel gas and oxidant gas. The fuel cell stacks are arranged radially outward of the reformer in a circumferential direction to face the reformer in a radial direction. The exhaust-gas combustor burns fuel gas that is not used and included in exhaust gas from the fuel cell stacks. The exhaust-gas combustor is arranged radially inward of the reformer to face the reformer in the radial direction. Each fuel cell stack includes flat plate type cells stacked in the radial direction. This achieves downsizing of the fuel cell system.
Abstract:
The present invention is to provide, in a combined system of a bioethanol producing device and an SOFC, a method that is capable of further enhancing the electric power generation efficiency of the SOFC, and is also capable of achieving further reduction of the energy required for distillation of the fermented liquid. A part of an anode off-gas is refluxed to the water-containing ethanol vapor line from the mash column to the reforming device at a reflux ratio ((flow rate of reflux gas)/(flow rate of (anode off-gas)−(reflux gas))) of from 1 to 2. The ethanol concentration of the water-containing ethanol vapor is controlled by refluxing, to a range of from 25 to 35% by weight with water contained in the anode off-gas of the solid oxide fuel cell.