摘要:
Methods, systems, and apparatus, including computer programs encoded on computer storage media, for performing long-term prediction (LTP) are described. One example of the methods includes determining a pitch gain and a pitch lag of an input audio signal for at least a predetermined number of frames. It is determined that the pitch gain of the input audio signal has exceeded a predetermined threshold and that a change of the pitch lag of the input audio signal has been within a predetermined range for at least the predetermined number of frames. In response to determining that the pitch gain of the input audio signal has exceeded the predetermined threshold and that the change of the third pitch lag has been within the predetermined range for at least the predetermined number of frames, a pitch gain is set for a current frame of the input audio signal.
摘要:
A method for processing speech signals prior to encoding a digital signal comprising audio data includes selecting frequency domain coding or time domain coding based on a coding bit rate to be used for coding the digital signal and a short pitch lag detection of the digital signal.
摘要:
The quality of encoded signals can be improved by reclassifying AUDIO signals carrying non-speech data as VOICE signals when periodicity parameters of the signal satisfy one or more criteria. In some embodiments, only low or medium bit rate signals are considered for re-classification. The periodicity parameters can include any characteristic or set of characteristics indicative of periodicity. For example, the periodicity parameter may include pitch differences between subframes in the audio signal, a normalized pitch correlation for one or more subframes, an average normalized pitch correlation for the audio signal, or combinations thereof. Audio signals which are re-classified as VOICED signals may be encoded in the time-domain, while audio signals that remain classified as AUDIO signals may be encoded in the frequency-domain.
摘要:
System and method embodiments are provided for very short pitch detection and coding for speech or audio signals. The system and method include detecting whether there is a very short pitch lag in a speech or audio signal that is shorter than a conventional minimum pitch limitation using a combination of time domain and frequency domain pitch detection techniques. The pitch detection techniques include using pitch correlations in time domain and detecting a lack of low frequency energy in the speech or audio signal in frequency domain. The detected very short pitch lag is coded using a pitch range from a predetermined minimum very short pitch limitation that is smaller than the conventional minimum pitch limitation.
摘要:
System and method embodiments are provided for very short pitch detection and coding for speech or audio signals. The system and method include detecting whether there is a very short pitch lag in a speech or audio signal that is shorter than a conventional minimum pitch limitation using a combination of time domain and frequency domain pitch detection techniques. The pitch detection techniques include using pitch correlations in time domain and detecting a lack of low frequency energy in the speech or audio signal in frequency domain. The detected very short pitch lag is coded using a pitch range from a predetermined minimum very short pitch limitation that is smaller than the conventional minimum pitch limitation.
摘要:
A method of performing BandWidth Extension (BWE) includes a frequency band shifting approach to generate an extended high band signal in time domain and a gain determination approach of controlling the energy of the extended high band. The proposed approach allows shifting any size of low band to any size of high band. The BWE scaling gain is estimated by using available filter bank coefficients with extremely low bit rate or without costing any bit, combining three possible gain factors.
摘要:
In accordance with an embodiment, a method of decoding an encoded audio bitstream at a decoder includes receiving the audio bitstream, decoding a low band bitstream of the audio bitstream to get low band coefficients in a frequency domain, and copying a plurality of the low band coefficients to a high frequency band location to generate high band coefficients. The method further includes processing the high band coefficients to form processed high band coefficients. Processing includes modifying an energy envelope of the high band coefficients by multiplying modification gains to flatten or smooth the high band coefficients, and applying a received spectral envelope decoded from the received audio bitstream to the high band coefficients. The low band coefficients and the processed high band coefficients are then inverse-transformed to the time domain to obtain a time domain output signal.
摘要:
In one embodiment of the present invention, a method of decoding an encoded audio bitstream and generating frequency bandwidth extension includes decoding the audio bitstream to produce a decoded low band audio signal and generate a low band excitation spectrum corresponding to a low frequency band. A sub-band area is selected from within the low frequency band using a parameter which indicates energy information of a spectral envelope of the decoded low band audio signal. A high band excitation spectrum is generated for a high frequency band by copying a sub-band excitation spectrum from the selected sub-band area to a high sub-band area corresponding to the high frequency band. Using the generated high band excitation spectrum, an extended high band audio signal is generated by applying a high band spectral envelope. The extended high band audio signal is added to the decoded low band audio signal to generate an audio output signal having an extended frequency bandwidth.
摘要:
This invention provides a more efficient way to quantize temporal envelope shaping of high band signal by benefiting from energy relationship between low band signal and high band signal; if low band signal is well coded or it is coded with time domain codec such as CELP, temporal envelope shaping information of low band signal can be used to predict temporal envelope shaping of high band signal; the temporal envelope shaping prediction can bring significant saving of bits to precisely quantize temporal envelope shaping of high band signal. This prediction approach can be combined with other specific approach to further increase the efficiency and save mores bits.
摘要:
In accordance with an embodiment, a method of generating an encoded audio signal, the method includes estimating a time-frequency energy of an input audio signal from a time-frequency filter bank, computing a global variance of the time-frequency energy, determining a post-processing method according to the global variance, and transmitting an encoded representation of the input audio signal along with an indication of the determined post-processing method.