摘要:
A packet communications system utilizes a route determining mechanism by identifying principal paths between the source and the destination in the system. Principal paths are minimum hop count paths with a transmission delay less than a specified threshold. Principal path links are accepted as legs of the optimum path, if feasible, i.e., if the resulting load on the link is less than a specified principal threshold. Secondary links are accepted only if the resulting load on the link is less than a specified secondary threshold, where the secondary threshold is less than the principal threshold. All paths must also have a transmission delay less than a specified threshold. Each request for a route includes the source node, the destination node, the load required, the maximum transmission delay and, if desired, the quality of service parameters which all of the legs of the route must satisfy. A modified Bellman-Ford breadth-first search algorithm is used to identify the principal links and, using these principal link identifications, determining the optimum path.
摘要:
First and second multi-node communication paths are connected via a bridge node. Each path employs a quota allocation scheme for access thereto by the nodes thereon. A first quota allocation signal is propagated on the first path and a second quota allocation signal is propagated on the second path, the second signal controlling access to the second path for the purpose of transmitting information to the bridge node destined for the first path. The quota allocation signals are synchronized to ensure that there is at most one circulation of the second quota allocation signal for each circulation of the first quota allocation signal. Information from the first path to the second path is deflected from the bridge node and around the first path if the bridge node is full. If the information is transmitted in sequenced packets, a deflected packet is assigned a deflection number. The bridge node tracks deflections via the deflection numbers.
摘要:
A method is provided for controlling access to a communication medium intended for sharing by a least two stations to enable peer-to-peer communications therebetween. Initially, the communication medium is sensed at a first station to determine if the medium is in use. If the first station senses that the medium is not in use, the first station may then transmit a connection request message intended for a second station. Upon receiving at the second station the connection request message, the second station transmits a connection confirm message to the first station for the purpose of establishing a reservation of the transmission medium for use by the first and second stations. Thereafter, the first station transmits information as one or more data messages from the first station to the second station. Upon receiving the last of the data messages from the first station, the second station transmits an acknowledgement message to the first station. The first station, upon receiving the acknowledgement message, subsequently transmits a disconnect request message to the second station. Upon receiving the disconnect request message, the second station subsequently transmits a disconnect confirm message for reception by the first station for the purpose of ending the reservation of the medium.