Abstract:
The embodiments of the present invention disclose methods and apparatuses for mapping processing and de-mapping processing in an optical transport network. A Lower Order Optical Channel Data Unit (LO ODU) signal is mapped into a payload area of an Optical Channel Data Tributary (ODTU) signal in units of M bytes. M is equal to the number of tributary slots of a Higher Order Optical Channel Payload Unit (HO OPU) that are to be occupied by the ODTU signal, and M is an integer larger than 1. Overhead information is encapsulated to an overhead area of the ODTU signal. Thereafter, the ODTU signal is multiplexed into the HO OPU. In this way, an efficient and universal mode for mapping the LO ODU to the HO OPU is provided.
Abstract:
Methods and apparatuses for mapping processing and de-mapping processing in an optical transport network are provided. A Low Order Optical Channel Data Unit (LO ODU) signal is mapped into a payload area of an Optical Channel Data Tributary (ODTU) signal in units of M bytes. M is equal to the number of time slots of a High Order Optical Channel Payload Unit (HO OPU) that are to be occupied by the ODTU signal, and M is an integer larger than 1. Overhead information is encapsulated to an overhead area of the ODTU signal. Thereafter, the ODTU signal is multiplexed into the HO OPU. According to the application, an efficient and universal mode for mapping the LO ODU to the HO OPU is provided.
Abstract:
The embodiments of the present invention disclose methods and apparatuses for mapping processing and de-mapping processing in an optical transport network. a Low Order Optical Channel Data Unit (LO ODU) signal is mapped into a payload area of an Optical Channel Data Tributary (ODTU) signal in units of M bytes. M is equal to the number of time slots of a High Order Optical Channel Payload Unit (HO OPU) that are to be occupied by the ODTU signal, and M is an integer larger than 1. Overhead information is encapsulated to an overhead area of the ODTU signal. Thereafter, the ODTU signal is multiplexed into the HO OPU. In this way, an efficient and universal mode for mapping the LO ODU to the HO OPU is provided.
Abstract:
Methods and apparatuses for mapping processing and de-mapping processing in an optical transport network are provided. A Low Order Optical Channel Data Unit (LO ODU) signal is mapped into a payload area of an Optical Channel Data Tributary (ODTU) signal in units of M bytes. M is equal to the number of time slots of a High Order Optical Channel Payload Unit (HO OPU) that are to be occupied by the ODTU signal, and M is an integer larger than 1. Overhead information is encapsulated to an overhead area of the ODTU signal. Thereafter, the ODTU signal is multiplexed into the HO OPU. According to the application, an efficient and universal mode for mapping the LO ODU to the HO OPU is provided.
Abstract:
The present invention provides a method, apparatus and system for transmitting and receiving a client signal. A client signal is mapped to a low-order ODU via a GFP scheme, wherein the low-order ODU is sized to M equal sized timeslots of a high-order OPUk, wherein the high-order OPUk is divided into N equal sized timeslots, wherein M is any one of a group from 1 to N; wherein if k=2, then N=8, if k=3, then N=32 and if k=4, then N=80. The low-order ODU with the client signal is mapped to M equal sized timeslots of the high-order OPUk via a GMP scheme; and an OTU with the high-order OPUk and overheads is formed, and then the OTU is transmitted.